Partial Progression?

Calculus Level 4

Let a 1 , a 2 , a 3 , a_1, a_2, a_3, \ldots be an arithmetic progression with first term A A and a non-zero common difference D D .

Is the series a 1 + a 2 + a 3 + a_1 + a_2+a_3+ \cdots Cesaro summable ? If yes, find the value of this divergent sum in terms of A A and/or D D .

No, it is not Cesàro summable Yes, it is Cesàro summable. Its divergent sum is D D Yes, it is Cesàro summable. Its divergent sum is A A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 21, 2016

The infinite summation of AP is Cesàro summable if the following limit L \mathscr L exists:

L = lim n 1 n k = 1 n i = 1 k a i = lim n 1 n k = 1 n ( A k + D ( k 1 ) ) = lim n 1 n ( n ( n + 1 ) 2 ( A + D ) n D ) = lim n ( n + 1 2 ( A + D ) D ) = \begin{aligned} \mathscr L & = \lim_{n \to \infty} \frac 1n \sum_{k=1}^n \sum_{i=1}^k a_i \\ & = \lim_{n \to \infty} \frac 1n \sum_{k=1}^n (Ak + D(k-1)) \\ & = \lim_{n \to \infty} \frac 1n \left(\frac {n(n+1)}2 (A+D)-nD \right) \\ & = \lim_{n \to \infty} \left(\frac {n+1}2 (A+D)-D \right) \\ & = \infty \end{aligned}

No, it is not Ces a ˋ ro summable. \boxed{\text{No, it is not Cesàro summable.}}


In response to @Pi Han Goh , thanks for letting me know about Stolz–Cesàro theorem .

Yes, it can be solved using Stolz–Cesàro theorem 1 (the / \infty / \infty case).

We are checking if lim n k = 1 n s k n \displaystyle \lim_{n \to \infty} \dfrac {\sum_{k=1}^n s_k}n exists. Putting a n = k = 1 n s k a_n = \sum_{k=1}^n s_k and b n = n b_n = n , then if lim n a n + 1 a n b n + 1 b n = l \displaystyle \lim_{n \to \infty} \frac {a_{n+1}-a_n}{b_{n+1}-b_n} = l exists, then lim n a n b n = l \displaystyle \lim_{n \to \infty} \frac {a_n}{b_n} = l .

l = lim n a n + 1 a n b n + 1 b n = lim n k = 1 n + 1 s k k = 1 n s k ( n + 1 ) n = lim n s n + 1 1 = lim n ( ( n + 1 ) A + n D ) = \begin{aligned} l & = \lim_{n \to \infty} \frac {a_{n+1}-a_n}{b_{n+1}-b_n} \\ & = \lim_{n \to \infty} \frac {\sum_{k=1}^{n+1} s_k - \sum_{k=1}^n s_k}{(n+1)-n} \\ & = \lim_{n \to \infty} \frac{s_{n+1}}1 \\ & = \lim_{n \to \infty} ((n+1)A + nD) \\ & = \infty \end{aligned}

lim n k = 1 n s k n \implies \displaystyle \lim_{n \to \infty} \dfrac {\sum_{k=1}^n s_k}n does not exist.

No, it is not Ces a ˋ ro summable. \boxed{\text{No, it is not Cesàro summable.}}

Wonderful!

Challenge master note: Can we solve this using Stolz–Cesàro theorem as well? Why or why not?

Pi Han Goh - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...