Partial Sphere Moment

Consider a partial sphere, defined as follows:

x = R cos θ sin ϕ y = R sin θ sin ϕ z = R cos ϕ 0 θ 2 π 0 ϕ α x = R \, \cos \theta \, \sin \phi \\ y = R \, \sin \theta \, \sin \phi \\ z = R \, \cos \phi \\ 0 \leq \theta \leq 2 \pi \\ 0 \leq \phi \leq \alpha

The mass of the partial sphere, M M , is uniformly distributed over the surface area. The object's moment of inertia with respect to the z z -axis is:

I z = A B M R 2 ( C + D cos α E F cos α ) sin G ( α H ) \large{I_z = \frac{A}{B} \, M R^2 \, \left( \frac{C + D \, \cos \alpha}{E - F \, \cos \alpha} \right) \, \sin^G \left( \frac{\alpha}{H} \right)}

If ( A , B , C , D , E , F , G , H ) (A,B,C,D,E,F,G,H) are positive integers, with ( A , B ) (A,B) coprime and ( C , E ) (C,E) coprime, determine ( A + B + C + D + E + F + G + H ) (A+B+C+D+E+F+G+H) .


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 8, 2018

The mass of the shell is M = 0 α 2 π ( R sin ϕ ) ρ × R d ϕ = 2 π R 2 ρ 0 α sin ϕ d ϕ = 2 π R 2 ρ ( 1 cos α ) M \; = \; \int_0^\alpha 2\pi(R\sin\phi)\rho \times R\,d\phi \; = \; 2\pi R^2\rho \int_0^\alpha \sin\phi\,d\phi \; = \; 2\pi R^2\rho(1 - \cos\alpha) and the moment of inertia is I = 0 α 2 π ( R sin ϕ ) ρ × ( R sin ϕ ) 2 × R d ϕ = 2 π R 4 ρ 0 α sin 3 ϕ d ϕ = 2 π R 4 ρ 0 α sin ϕ ( 1 cos 2 ϕ ) d ϕ = 2 π R 4 ρ [ cos ϕ + 1 3 cos 3 ϕ ] 0 α = 2 π R 4 ρ ( 2 3 + cos α 1 3 cos 3 α ) = 2 3 π R 4 ρ ( 2 + 3 cos α cos 3 α ) = 2 3 π R 4 ρ ( 1 cos α ) 2 ( 2 + cos α ) = 8 3 π R 4 ρ ( 2 + cos α ) sin 2 1 2 α \begin{aligned} I & = \; \int_0^\alpha 2\pi(R\sin\phi)\rho \times (R\sin\phi)^2\times R\,d\phi\; = \; 2\pi R^4\rho \int_0^\alpha \sin^3\phi\,d\phi \\ & = \; 2\pi R^4\rho \int_0^\alpha \sin\phi(1 - \cos^2\phi)\,d\phi \; = \; 2\pi R^4\rho \Big[-\cos\phi + \tfrac13\cos^3\phi\Big]_0^\alpha \\ & = \; 2\pi R^4 \rho \big(\tfrac23 + \cos\alpha - \tfrac13\cos^3\alpha\big) \; = \; \tfrac23\pi R^4\rho (2 + 3\cos\alpha - \cos^3\alpha) \\ &= \; \tfrac23\pi R^4 \rho(1 - \cos\alpha)^2(2 + \cos\alpha) \; = \; \tfrac83\pi R^4\rho (2 +\cos\alpha)\sin^2\tfrac12\alpha \end{aligned} where ρ \rho is the surface mass density. This makes the moment of inertia I = 4 3 M R 2 2 + cos α 1 cos α sin 4 α 2 I \; = \; \tfrac43 MR^2 \frac{2 + \cos\alpha}{1 - \cos\alpha} \sin^4\tfrac{\alpha}{2} and so the answer is 4 + 3 + 2 + 1 + 1 + 1 + 4 + 2 = 18 4+3+2+1+1+1+4+2 = \boxed{18} .


The answer is in a slightly odd form, since a factor of 1 cos α 1 - \cos\alpha can be cancelled, so that I = 1 3 M R 2 ( 1 cos α ) ( 2 + cos α ) = 2 3 M R 2 ( 2 + cos α ) sin 2 α 2 I \; = \; \tfrac13MR^2(1-\cos\alpha)(2 + \cos\alpha) \; = \; \tfrac23MR^2(2 + \cos\alpha)\sin^2\tfrac{\alpha}{2}

I agreed with everything but the power on the sin. I ended up with the fourth power

A Former Brilliant Member - 2 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...