Partitioned Triangle

Geometry Level 3

A B C \triangle ABC has its incenter at I I , A = 9 0 \angle A = 90^\circ , A C = 4 AC = 4 , and A B = x AB = x . If the area of quadrilateral E I D C EIDC and the area of A I B \triangle AIB are the same, find 1 0 4 x \lfloor 10^4 x \rfloor .


The answer is 50880.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
Dec 19, 2020

Claim: A B = C E + C D AB=CE+CD Proof: Note that the perpendiculars drawn from I I to the sides A B , B C AB, BC and C A CA all have length r r (inradius), since the foot of the perpendiculars (from I I ) lie on the incircle

So we can rewrite the given area condition as, [ A I B ] = [ C I E ] + [ C I D ] A B r 2 = C E r 2 + C D r 2 A B = C E + C D \begin{aligned} [\triangle AIB] &=[\triangle CIE]+[\triangle CID] \\ \\ \frac{AB\cdot r}{2} &=\frac{CE\cdot r}{2}+\frac{CD\cdot r}{2} \\ \\ \implies AB &=CE+CD\end{aligned}


Note that the incenter , I I lies on the angle bisectors of A \angle A and B \angle B . Using the angle bisector theorem , A E C E = x x 2 + 16 \frac{AE}{CE}=\frac{x}{\sqrt{x^2+16}} C E + C E x x 2 + 16 = 4 C E = 4 x 2 + 16 x + x 2 + 16 \implies CE+CE\cdot\frac{x}{\sqrt{x^2+16}}=4\implies CE=\frac{4\sqrt{x^2+16}}{x+\sqrt{x^2+16}} Similarly, B D C D = x 4 \frac{BD}{CD}=\frac{x}{4} C D + C D x 4 = x 2 + 16 C D = 4 x 2 + 16 x + 4 \implies CD+CD\cdot\frac{x}{4}=\sqrt{x^2+16}\implies CD=\frac{4\sqrt{x^2+16}}{x+4}

Using the above claim, A B = C E + C D x = 4 x 2 + 16 x + x 2 + 16 + 4 x 2 + 16 x + 4 \begin{aligned} AB&=CE+CD \\ \implies x&=\frac{4\sqrt{x^2+16}}{x+\sqrt{x^2+16}}+\frac{4\sqrt{x^2+16}}{x+4}\end{aligned} Solving the above equation gives x = ± 2 2 + 2 5 5.08807859 x=\pm 2\sqrt{2+2\sqrt{5}}\approx 5.08807859 1 0 4 x = 50880 \implies \lfloor10^4\cdot x\rfloor=\boxed{50880}

Well done!

Fletcher Mattox - 5 months, 3 weeks ago

Log in to reply

Thank you. Nice problem :)

Sathvik Acharya - 5 months, 3 weeks ago
Chew-Seong Cheong
Dec 20, 2020

Let B C = y = x 2 + 4 2 BC = y = \sqrt{x^2 + 4^2} and the inradius be r r . Then the area of A I B \triangle AIB , [ A I B ] = r x 2 [AIB] = \dfrac {rx}2 and that of quadrilateral E I D C EIDC :

[ E I D C ] = C E C A [ C I A ] + C D B C [ B I C ] By angle bisector theorem, = y x + y 4 r 2 + 4 x + 4 r y 2 C E A E = B C A B = y x , C D B D = 4 x = 2 r y x + y + 2 r y x + 4 Since [ E I D C ] = [ A I B ] r x 2 = 2 r y x + y + 2 r y x + 4 x = 4 y x + y + 4 y x + 4 = 4 x 2 + 16 x + x 2 + 16 + 4 x 2 + 16 x + 4 Solving the equation x = 2 2 + 2 5 5.088078598 \begin{aligned} [EIDC] & = \blue{\frac {CE}{CA}}[CIA] + \blue{\frac {CD}{BC}}[BIC] & \small \blue{\text{By angle bisector theorem,}} \\ & = \blue{\frac y{x+y}}\cdot \frac {4r}2 + \blue{\frac 4{x+4}}\cdot \frac {ry}2 & \small \blue{\frac {CE}{AE} = \frac {BC}{AB} = \frac yx, \frac {CD}{BD} = \frac 4x} \\ & = \frac {2ry}{x+y} + \frac {2ry}{x+4} & \small \blue{\text{Since }[EIDC]=[AIB]} \\ \frac {rx}2 & = \frac {2ry}{x+y} + \frac {2ry}{x+4} \\ \implies x & = \frac {4y}{x+y} + \frac {4y}{x+4} \\ &= \frac {4\sqrt{x^2+16}}{x + \sqrt{x^2+16}} + \frac {4\sqrt{x^2+16}}{x+4} & \small \blue{\text{Solving the equation}} \\ \implies x & = 2\sqrt{2+2\sqrt 5} \approx 5.088078598 \end{aligned}

Therefore 1 0 4 x = 50880 \lfloor 10^4 x \rfloor = \boxed{50880} .


Reference: Angle bisector theorem

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...