Party time integral!

Calculus Level 5

0 π 4 tan ( x ) 3 d x \large \int_0^{\frac\pi4} \sqrt[3]{\tan(x)} \, dx

If the value of the integral above is equals to a b π 1 c ln ( 2 ) \dfrac{\sqrt a }b \pi - \dfrac1c \ln(2) for positive integers a , b a,b and c c with a a square-free, find the value of a + b + c a+b+c .


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

So we have,

0 π 4 tan ( x ) 3 d x \int_0^{\frac{\pi}{4}}\sqrt[3]{\tan(x)} dx and let u 3 = tan ( x ) u^3 = \tan(x) or x = arctan ( x ) x = \arctan(x) and hence, d x = 3 u 2 1 + u 6 d u dx = \frac{3u^2}{1+u^6} du . Also, substituting for x at 0 0 and π 4 \frac{\pi}{4} gives us the bounds for u u .

0 1 u 3 u 2 1 + ( u 2 ) 3 d u \Rightarrow \int_0^1 u\frac{3u^2}{1+(u^2)^3} du and let v = u 2 v = u^2 to get d v = 2 u d u dv = 2u du or u d u = 1 2 d v u du = \frac{1}{2} dv . Similarly, substituting at u = 0 , 1 u = 0, 1 yields v = 0 , 1 v = 0, 1 respectively.

Thus, the integral becomes,

0 1 1 2 3 v v 3 + 1 d v \Rightarrow \int_0^1 \frac{1}{2} \frac{3v}{v^3+1} dv

1 2 0 1 3 v ( v + 1 ) ( v 2 v + 1 ) d v \Rightarrow \frac{1}{2} \int_0^1 \frac{3v}{(v+1)(v^2-v+1)} dv

Going into partial fraction decomposition, and taking just the integrand, we have the following prophecy:

3 v ( v + 1 ) ( v 2 v + 1 ) = A v + 1 + B v + C v 2 v + 1 \frac{3v}{(v+1)(v^2-v+1)} = \frac{A}{v+1} + \frac{Bv + C}{v^2-v+1}

i.e., 3 v = A ( v 2 v + 1 ) + ( B v + C ) ( v + 1 ) 3v = A(v^2-v+1) + (Bv + C)(v+1)

3 v = A v 2 A v + A + B v 2 + B v + C v + C 3v = Av^2 - Av + A + Bv^2 + Bv + Cv + C

Through pattern matching, we obtain

v 2 : A + B = 0 B = A v^2: A+B = 0 \Rightarrow B = -A , v : A + B + C = 3 v: -A+B+C = 3 , and Constant: A + C = 0 C = A A+C = 0 \Rightarrow C = -A

Combining that information, A A A = 3 A = 1 B = C = 1 -A-A-A = 3 \Rightarrow A = -1 \Rightarrow B = C = 1

Therefore,

1 2 0 1 3 v ( v + 1 ) ( v 2 v + 1 ) d v = 1 2 0 1 1 v + 1 + v + 1 v 2 v + 1 d v \frac{1}{2} \int_0^1 \frac{3v}{(v+1)(v^2-v+1)} dv = \frac{1}{2} \int_0^1 \frac{-1}{v+1} + \frac{v+1}{v^2-v+1} dv

1 2 [ l n v + 1 ] 0 1 + 1 2 0 1 v + 1 v 2 v + 1 d v \Rightarrow \frac{1}{2}[-ln|v+1|]_0^1 + \frac{1}{2} \int_0^1 \frac{v+1}{v^2-v+1} dv

And doing a few operations, i.e., multiplying and diving by 2, adding and subtracting 1.

1 2 ( l n ( 2 ) ) + 1 4 0 1 2 v 1 + 3 v v + 1 d v \Rightarrow \frac{1}{2}(-ln(2)) + \frac{1}{4} \int_0^1 \frac{2v-1+3}{v^-v+1} dv

1 2 l n ( 2 ) + 1 4 0 1 2 v 1 v 2 v + 1 d v + 3 4 0 1 1 v 2 v + 1 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{1}{4} \int_0^1 \frac{2v-1}{v^2-v+1} dv + \frac{3}{4} \int_0^1 \frac{1}{v^2-v+1} dv

1 2 l n ( 2 ) + 1 4 [ l n ( v 2 v + 1 ) ] 0 1 + 3 4 0 1 1 v 2 v + 1 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{1}{4}[ln(v^2-v+1)]_0^1 + \frac{3}{4} \int_0^1 \frac{1}{v^2-v+1} dv

1 2 l n ( 2 ) + 1 4 [ 0 0 ] + 3 4 0 1 1 v 2 v + 1 4 1 4 + 1 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{1}{4}[0 - 0] + \frac{3}{4} \int_0^1 \frac{1}{v^2 - v + \frac{1}{4} - \frac{1}{4} + 1} dv

1 2 l n ( 2 ) + 3 4 0 1 1 ( v 1 2 ) 2 + 3 4 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{3}{4} \int_0^1 \frac{1}{(v-\frac{1}{2})^2 + \frac{3}{4}} dv

1 2 l n ( 2 ) + 3 4 0 1 1 3 4 ( 4 3 ( v 1 2 ) 2 + 1 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{3}{4} \int_0^1 \frac{1}{\frac{3}{4}(\frac{4}{3}(v-\frac{1}{2})^2 +1} dv

1 2 l n ( 2 ) + 3 4 0 1 4 / 3 ( 2 3 ( v 1 2 ) ) 2 + 1 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{3}{4} \int_0^1 \frac{4/3}{(\frac{2}{\sqrt{3}}(v-\frac{1}{2}))^2 + 1} dv

1 2 l n ( 2 ) + 3 4 0 2 2 3 2 3 ( 2 v 3 1 3 ) 2 + 1 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{3}{4} \int_0^2 \frac{\frac{2}{\sqrt{3}}\frac{2}{\sqrt{3}}}{(\frac{2v}{\sqrt{3}} - \frac{1}{\sqrt{3}})^2 + 1} dv

1 2 l n ( 2 ) + 3 2 0 1 2 / 3 ( 2 v 3 1 3 ) 2 + 1 d v \Rightarrow \frac{-1}{2}ln(2) + \frac{\sqrt{3}}{2} \int_0^1 \frac{2/\sqrt{3}}{(\frac{2v}{\sqrt{3}} - \frac{1}{\sqrt{3}})^2 + 1} dv

From an awareness/experience in calculus, the 1 1 + x 2 d x = arctan ( x ) + C \int \frac{1}{1+x^2} dx = \arctan(x) + C , if not, it is quite easy to derive with a trig. substitution of x = tan ( θ ) x = \tan(\theta)

1 2 l n ( 2 ) + 3 2 [ arctan ( 2 v 3 1 3 ) ] 0 1 \Rightarrow \frac{-1}{2}ln(2) + \frac{\sqrt{3}}{2}[\arctan(\frac{2v}{\sqrt{3}} - \frac{1}{\sqrt{3}})]_0^1

1 2 l n ( 2 ) + 3 2 ( arctan ( 1 3 arctan ( 1 3 ) ) \Rightarrow \frac{-1}{2}ln(2) + \frac{\sqrt{3}}{2}(\arctan(\frac{1}{\sqrt{3}} - \arctan(\frac{-1}{\sqrt{3}}))

1 2 l n ( 2 ) + 3 2 ( π 6 + π 6 ) \Rightarrow \frac{-1}{2}ln(2) + \frac{\sqrt{3}}{2}(\frac{\pi}{6} + \frac{\pi}{6})

1 2 l n ( 2 ) + 3 2 ( π 3 ) \Rightarrow \frac{-1}{2}ln(2) + \frac{\sqrt{3}}{2}(\frac{\pi}{3})

We finally arrive at...

0 π 4 tan ( x ) 3 d x = 3 6 π 1 2 l n ( 2 ) \int_0^{\frac{\pi}{4}} \sqrt[3]{\tan(x)} dx = \frac{\sqrt{3}}{6} \pi - \frac{1}{2}ln(2)

Therefore, a = 3 a = 3 , b = 6 b = 6 , and c = 2 c = 2 which sum to 3 + 6 + 2 = 11 3+6+2 = 11

@Jeffrey Wong . Take a look. :P Such solution, much long. Wow.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...