Pascal's coefficient identity

0 th row: 1 1 st row: 1 1 2 nd row: 1 2 1 3 rd row: 1 3 3 1 4 th row: 1 4 6 4 1 \begin{array}{rc} 0^\text{th} \text{ row:} & 1 \\ 1^\text{st} \text{ row:} & 1 \quad 1 \\ 2^\text{nd} \text{ row:} & 1 \quad 2 \quad 1 \\ 3^\text{rd} \text{ row:} & 1 \quad 3 \quad 3 \quad 1 \\ 4^\text{th} \text{ row:} & 1 \quad 4 \quad 6 \quad 4 \quad 1 \\ \vdots \ \ \ & \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \end{array}

Pascal's triangle is shown above for the 0 th 0^\text{th} row through the 4 th 4^\text{th} row. What is the 4 th 4^\text{th} element in the 1 0 th 10^\text{th} row?


Note: Each row starts with the 0 th 0^\text{th} element. For example, the 0 th 0^\text{th} , 1 st 1^\text{st} , 2 nd 2^\text{nd} , and 3 rd 3^\text{rd} elements of the 3 rd 3^\text{rd} row are 1, 3, 3, and 1, respectively.


The answer is 210.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rodrigo Segura
Aug 16, 2016

Using the binomial theorem ( n k ) = n ! ( n k ) ! k ! \binom{n}{k}=\frac{n!}{(n-k)! \hspace{.15cm} k!} is another way to find coefficients of an specific row.

We know that ( x + y ) n = ( n 0 ) x n y 0 + ( n 1 ) x n 1 y 1 + ( n 2 ) x n 2 y 2 + + ( n n 1 ) x 1 y n 1 + ( n n ) x 0 y n (x+y)^n = \binom{n}{0} x^n y^0 + \binom{n}{1} x^{n-1} y^1 + \binom{n}{2} x^{n-2} y^2 + \cdots + \binom{n}{n-1} x^1 y^{n-1} + \binom{n}{n} x^0 y^n where ( n k ) \binom{n}{k} is a specific positive integer knwon as binomial coefficient as we already said. \par

It is the 4 th 4^\text{th} element in the 1 0 th 10^\text{th} row which we are looking for, therefore: ( 10 4 ) = 10 ! 4 ! ( 10 4 ) ! \binom{10}{4}=\frac{10!}{4!(10-4)!}

( 10 4 ) = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 4 × 3 × 2 × 1 × 6 × 5 × 4 × 3 × 2 × 1 = 10 × 9 × 8 × 7 4 × 3 × 2 × 1 = 5040 24 = 210 \binom{10}{4} = \dfrac {10×9×8×7×6×5×4×3×2×1}{4×3×2×1×6×5×4×3×2×1} = \dfrac {10×9×8×7}{4×3×2×1} = \dfrac {5040}{24} = 210

Thus, the 4 th 4^\text{th} element in the 1 0 th 10^\text{th} row is equal to ( 10 4 ) = 210 \binom{10}{4}= \boxed{210} .

Yes this kind of helps, thank you very much.

Neel Shintre - 11 months, 3 weeks ago
Andy Hayes
Jun 27, 2016

Pascal's Triangle contains the values of the binomial coefficient . Each j th j^\text{th} element in the i th i^\text{th} row is equal to ( i j ) \binom{i}{j} .

Thus, the 4 th 4^\text{th} element in the 1 0 th 10^\text{th} row is equal to ( 10 4 ) = 210 \binom{10}{4}=\boxed{210} .

How does the calculation work?

Rubeen Shazrith - 1 year, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...