Pascal's Limit

Calculus Level 2

Let P n P_{n} be the product of the numbers in the n n th row of Pascal's Triangle.
lim n P n 1 P n + 1 P n 2 = \lim_{n\to\infty}\frac{P_{n-1} P_{n+1}}{P_{n}^2} =

e e 1 e 2 e^2 ln 2 \ln 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

P n = k = 0 n ( n k ) = k = 0 n n ! k ! ( n k ) ! = ( n ! ) n + 1 k = 0 n 1 ( k ! ) 2 \displaystyle P_n = \prod _{k=0}^n {\begin{pmatrix} n \\ k \end{pmatrix} } = \prod _{k=0}^n {\frac {n!}{k!(n-k)!}} = (n!)^{n+1} \prod _{k=0}^n {\frac {1}{(k!)^2}}

Therefore, P n + 1 = ( n + 1 ) ! n + 2 k = 0 n + 1 1 ( k ! ) 2 \displaystyle \quad P_{n+1} = (n+1)!^{n+2} \prod _{k=0}^{n+1} {\frac {1}{(k!)^2}}

P n + 1 P n = ( n + 1 ) n n ! P n P n 1 = n n 1 ( n 1 ) ! \Rightarrow \dfrac {P_{n+1}}{P_n} = \dfrac {(n+1)^n} {n!} \quad \Rightarrow \dfrac {P_{n}}{P_{n-1}} = \dfrac {n^{n-1}} {(n-1)!}

Therefore,

lim n P n 1 P n + 1 P n 2 = lim n ( n 1 ) ! ( n + 1 ) n n ! n n 1 = lim n ( n + 1 ) n n ˙ n n 1 \displaystyle \lim _{n\rightarrow \infty} {\frac {P_{n-1}P_{n+1}} {P_n^2}} = \lim _{n\rightarrow \infty} {\frac {(n-1)!\space (n+1)^n} {n!\space n^{n-1}}} = \lim _{n\rightarrow \infty} {\frac {(n+1)^n}{n\dot{} n^{n-1}}}

= lim n ( n + 1 n ) n = lim n ( 1 + 1 n ) n = e \displaystyle = \lim _{n\rightarrow \infty} { \left( \frac {n+1}{n}\right)^n} = \lim _{n\rightarrow \infty} { \left( 1 + \frac {1}{n}\right)^n} = \boxed{e}

Could explain how you took out n! Out of the product symbol. I don't know the properties of this pi symbo.

Puneet Pinku - 4 years ago

Log in to reply

k = 0 n n ! k ! ( n k ) ! = n ! 0 ! n ! × n ! 1 ! ( n 1 ) ! × n ! 2 ! ( n 2 ) ! × × n ! n ! 0 ! Number of n ! on top = n + 1 \displaystyle \prod_{k=0}^n \frac {n!}{k!(n-k)!} = \overbrace{\frac {n!}{0!n!} \times \frac {n!}{1!(n-1)!} \times \frac {n!}{2!(n-2)!} \times \cdots \times \frac {n!}{n!0!}}^{\text{Number of }n! \text{ on top }=n+1}

Chew-Seong Cheong - 4 years ago

Log in to reply

Thankyou very much sir..

Puneet Pinku - 4 years ago

Using brute force method, for n=2, the quotient is 2; n = 3, the quotient is 2.25; n=4, the quotient is 2.37; n=5, the quotient is 2.44 and so on increasing and approaching 2.71828..or e

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...