Past, present, and everything in between

Algebra Level 5

i = 1 2 2015 ( 2015 2 i + 1995 2 i ) \Large \prod_{i=1}^{2^{2015}} \left( \sqrt[2^i]{2015} + \sqrt[2^i]{1995} \right)

Given that the reciprocal of the product above can be expressed as 1 d ( a 1 / 2 b c 1 / 2 b ) \large \dfrac 1d \left( a^{1/2^b} - c^{1/2^b} \right) where a , b , c a,b,c and d d are positive integers. What is the value of c log 2 ( b ) + 5 a log 2 ( b d ) ? \large \dfrac{c \log_2( b) + 5a}{\log_2 (b^d)}?

Try to solve this one


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jesus Manrique
Aug 17, 2015

First, in order to transform the main expression into a more manipulable one, we can rationalize it:

2015 2 i + 1995 2 i 2015 2 i 1995 2 i 2015 2 i 1995 2 i = ( 2015 2 i ) 2 ( 1995 2 i ) 2 2015 2 i 1995 2 i = 2015 2 i 1 1995 2 i 1 2015 2 i 1995 2 i \sqrt[{{2^i}}]{{2015}} + \sqrt[{{2^i}}]{{1995}} \cdot \frac{{\sqrt[{{2^i}}]{{2015}} - \sqrt[{{2^i}}]{{1995}}}}{{\sqrt[{{2^i}}]{{2015}} - \sqrt[{{2^i}}]{{1995}}}} = \frac{{{{\left( {\sqrt[{{2^i}}]{{2015}}} \right)}^2} - {{\left( {\sqrt[{{2^i}}]{{1995}}} \right)}^2}}}{{\sqrt[{{2^i}}]{{2015}} - \sqrt[{{2^i}}]{{1995}}}} = \frac{{\sqrt[{{2^{i - 1}}}]{{2015}} - \sqrt[{{2^{i - 1}}}]{{1995}}}}{{\sqrt[{{2^i}}]{{2015}} - \sqrt[{{2^i}}]{{1995}}}}

Easily we can observe that the new expression will let us to simplify factors while developing the Product. Thus:

i = 1 2 2015 ( 2015 2 i + 1995 2 i ) = 2015 1995 2015 1995 2015 1995 2015 4 1995 4 2015 4 1995 4 2015 8 1995 8 2015 2 2 2015 1 1995 2 2 2015 1 2015 2 2 2015 1995 2 2 2015 \prod\limits_{i = 1}^{{2^{2015}}} {\left( {\sqrt[{{2^i}}]{{2015}} + \sqrt[{{2^i}}]{{1995}}} \right)} = \frac{{2015 - 1995}}{{\sqrt {2015} - \sqrt {1995} }} \cdot \frac{{\sqrt {2015} - \sqrt {1995} }}{{\sqrt[4]{{2015}} - \sqrt[4]{{1995}}}} \cdot \frac{{\sqrt[4]{{2015}} - \sqrt[4]{{1995}}}}{{\sqrt[8]{{2015}} - \sqrt[8]{{1995}}}} \cdot \cdots \cdot \frac{{\sqrt[{{2^{{2^{2015}} - 1}}}]{{2015}} - \sqrt[{{2^{{2^{2015}} - 1}}}]{{1995}}}}{{\sqrt[{{2^{{2^{2015}}}}}]{{2015}} - \sqrt[{{2^{{2^{2015}}}}}]{{1995}}}}

The numerator of any factor simplifies with the denominator of the preceeding one. Then, the result is:

i = 1 2 2015 ( 2015 2 i + 1995 2 i ) = 2015 1995 2015 2 2 2015 1995 2 2 2015 = 20 ( 2015 ) 1 2 2 2015 ( 1995 ) 1 2 2 2015 \prod\limits_{i = 1}^{{2^{2015}}} {\left( {\sqrt[{{2^i}}]{{2015}} + \sqrt[{{2^i}}]{{1995}}} \right)} = \frac{{2015 - 1995}}{{\sqrt[{{2^{{2^{2015}}}}}]{{2015}} - \sqrt[{{2^{{2^{2015}}}}}]{{1995}}}} = \frac{{20}}{{{{\left( {2015} \right)}^{\frac{1}{{{2^{{2^{2015}}}}}}}} - {{\left( {1995} \right)}^{\frac{1}{{{2^{{2^{2015}}}}}}}}}}

So, the reciprocal would be ( 2015 ) 1 2 2 2015 ( 1995 ) 1 2 2 2015 20 \frac{{{{\left( {2015} \right)}^{\frac{1}{{{2^{{2^{2015}}}}}}}} - {{\left( {1995} \right)}^{\frac{1}{{{2^{{2^{2015}}}}}}}}}}{{20}} and the requested values:

a = 2015 b = 2 2015 c = 1995 d = 20 \begin{array}{l} a = 2015\\ b = {2^{2015}}\\ c = 1995\\ d = 20 \end{array}

Finally, substituing:

c log 2 ( b ) + 5 a log 2 ( b d ) = 1995 log 2 ( 2 2015 ) + 5 2015 20 log 2 ( 2 2015 ) = 1995 2015 + 5 2015 20 2015 = 2000 20 = 100 \frac{{c{{\log }_2}\left( b \right) + 5a}}{{{{\log }_2}\left( {{b^d}} \right)}} = \frac{{1995 \cdot {{\log }_2}\left( {{2^{2015}}} \right) + 5 \cdot 2015}}{{20{{\log }_2}\left( {{2^{2015}}} \right)}} = \frac{{1995 \cdot 2015 + 5 \cdot 2015}}{{20 \cdot 2015}} = \frac{{2000}}{{20}} = \boxed{100}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...