Past, Present, or Future?

Algebra Level 3

k = 0 2014 ( 2 2 + e 2 k π i / 2015 ) \sum_{k=0}^{2014}\left(\frac{2}{2+e^{2k\pi i/2015}}\right)

Let S S denote the value of the summation above. Which of the answer choices must be true?

Bonus question : Can you generalize this? If S n = k = 0 n 1 ( 2 2 + e 2 k π i / n ) \displaystyle S_n=\sum_{k=0}^{n-1}\left(\frac{2}{2+e^{2k\pi i/n}}\right) , what is the relationship between S n S_n and n n ?

S S is undefined S = 2015 S=2015 S > 2015 S>2015 S < 2015 S<2015

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satvik Pandey
Oct 20, 2015

Here e 2 k π i n { e }^{ \frac { 2k\pi i }{ n } }\quad where 'n' can take integral values form 0 2014 0-2014 are simply roots of z 2015 = 1 { z }^{ 2015 }=1

So z 2015 1 = i = 1 2015 ( x ω i ) { z }^{ 2015 }-1=\prod _{ i=1 }^{ 2015 }{ (x-{ \omega }_{ i }) }

log ( z 2015 1 ) = log ( i = 1 2015 ( x ω i ) ) \log { { (z }^{ 2015 }-1) } =\log { \left( \prod _{ i=1 }^{ 2015 }{ (x-{ \omega }_{ i }) } \right) }

2015 z 2014 z 2015 1 = i = 1 2015 1 ( x ω i ) \frac { 2015{ z }^{ 2014 } }{ { z }^{ 2015 }-1 } =\sum _{ i=1 }^{ 2015 }{ \frac { 1 }{ (x-{ \omega }_{ i }) } }

2015 ( 2 ) 2014 ( 2 ) 2015 1 × 2 = i = 1 2015 2 ( 2 + ω i ) \frac { 2015{ (-2) }^{ 2014 } }{ (-2)^{ 2015 }-1 } \times 2=-\sum _{ i=1 }^{ 2015 }{ \frac { 2 }{ (2+{ \omega }_{ i }) } }

i = 1 2015 2 ( 2 + ω i ) = 2015 ( 2 2015 2 2015 + 1 ) < 2015 \sum _{ i=1 }^{ 2015 }{ \frac { 2 }{ (2+{ \omega }_{ i }) } } =2015\left( \frac { { 2 }^{ 2015 } }{ { 2 }^{ 2015 }+1 } \right) <2015 .

Yes, exactly... very clear solution (upvote)! What happens when n n is even?

The number is "in the past", < 2015 <2015 ... but just barely.

Otto Bretscher - 5 years, 7 months ago

Log in to reply

Thank you, sir! The number is " in future" if 'n' is even. :D

The value of S n { S }_{ n } is n 2 n 2 n + 1 \frac { n{ 2 }^{ n } }{ { 2 }^{ n }+1 } when 'n' is odd and n 2 n 2 n 1 \frac { n{ 2 }^{ n } }{ { 2 }^{ n }-1 } when it is even.

satvik pandey - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...