Pattern practice

What is the next number in each of the following sequences (they follow the same logic)?

1 , 4 , 27 , . . . 1 , 5 , 32 , . . . 1 , 4 , 108 , . . . 1, 4, 27, ... \\ 1, 5, 32, ... \\ 1, 4, 108, ...

256, 288, 27648 64, 96, 256 64, 96, 27648 256, 288, 256

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The first sequence is 1 1 , 2 2 , 3 3 , 4 4 , . . . 1^1,2^2,3^3,4^4,... . The second sequence is 1 1 , 1 1 + 2 2 , 1 1 + 2 2 + 3 3 , 1 1 + 2 2 + 3 3 + 4 4 , . . . 1^1,1^1+2^2,1^1+2^2+3^3,1^1+2^2+3^3+4^4,... . The third sequence is 1 1 , 1 1 × 2 2 , 1 1 × 2 2 × 3 3 , 1 1 × 2 2 × 3 3 × 4 4 , . . . 1^1,1^1\times 2^2,1^1\times 2^2\times 3^3,1^1\times 2^2\times 3^3\times 4^4,... . So the required numbers are 4 4 , 1 1 + 2 2 + 3 3 + 4 4 , 1 1 × 2 2 × 3 3 × 4 4 4^4,1^1+2^2+3^3+4^4,1^1\times 2^2\times 3^3\times 4^4 or 256 , 288 , 27648 \boxed {256,288,27648} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...