Pearls Pearls Pearls

Algebra Level 3

On a string of 33 pearls, the middle pearl is the largest and most
expensive of all.

Starting from one end, each pearl is worth $100 more than the one before, up to and including the middle pearl.

From the other end, each pearl is worth $150 more than the one before, up to and including the middle pearl.

The string of pearls is worth $65,000. What is the value of the middle pearl?


The answer is 3000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Satyen Nabar
Mar 14, 2014

Say that the left side has value L, the middle pearl has value M, and the right side has value R. Then we know that

L + M + R = 65000.

L = (M-100) + (M-200) + (M-300) + ... + (M-1600).

L = 16M - 100(1+2+3+...+16)

L = 16M - 100(17)(16/2)

L = 16M - 100*136

L = 16M - 13600.

Now R = (M-150) + (M-300) + ... + (M-2400)

R = 16M - 150(1+2+...+16)

R = 16M - 150*136

R = 16M - 20400

L+M+R = 65000

16M - 13600 + M + 16M - 20400 = 65000

33M - 34000 = 65000

33M = 99000

M = 3000

We define x i x_i as the price of the i t h i^{th} pearl of the necklace. Let us designate x 17 x_{17} to be the price of our middle pearl (since the middlemost number of a series from 1 1 to 33 33 is 1 + 33 2 = 34 2 = 17 \frac{1 + 33}{2} = \frac{34}{2} = 17 ). Further, we let the differences of prices of from the 1 6 t h 16^{th} to 1 s t 1^{st} pearls and the 1 7 t h 17^{th} pearl be divisible by $ 100 \$100 and the differences of prices of from the 1 8 t h 18^{th} to 3 3 r d 33^{rd} pearls and the 1 7 t h 17^{th} pearl be divisible by $ 150 \$150 .

If we consider the combined prices of the 1 6 t h 16^{th} and the 1 8 t h 18^{th} pearls, we know that the two pearls are worth ( x 16 + x 18 ) = ( x 17 $ 100 ) + ( x 17 $ 150 ) = 2 x 17 $ 250 (x_{16} + x_{18}) = (x_{17} - \$100) + (x_{17} - \$150) = 2x_{17} - \$250 . The 1 5 t h 15^{th} and 1 9 t h 19^{th} pearls, in turn, are worth ( x 15 + x 19 ) = ( x 17 $ 200 ) + ( x 17 $ 300 ) = 2 x 17 $ 500 (x_{15} + x_{19}) = (x_{17} - \$200) + (x_{17} - \$300) = 2x_{17} - \$500 . Continuing the pattern, the sum of the 1 s t 1^{st} and 3 3 r d 33^{rd} pearls is 2 x 17 $ 4000 2x_{17} - \$4000 . Thus, the sum of the prices of all pearls would be

$ 65000 = x 17 + 2 x 17 $ 250 + 2 x 17 $ 500 + + 2 x 17 $ 4000 \$65000 = x_{17} + 2x_{17} - \$250 + 2x_{17} - \$500 + \ldots + 2x_{17} - \$4000

Solving for x 17 x_{17} ,

x 17 + 2 x 17 $ 250 + 2 x 17 $ 500 + + 2 x 17 $ 3750 + 2 x 17 $ 4000 = $ 65000 33 x 17 $ 34000 = $ 65000 33 x 17 = $ 99000 x 17 = $ 300 0 \begin{aligned} x_{17} + 2x_{17} - \$250 + 2x_{17} - \$500 + \ldots + 2x_{17} - \$3750 + 2x_{17} - \$4000 &= \$65000 \\ 33x_{17} - \$34000 &= \$65000 \\ 33x_{17} &= \$99000 \\ x_{17} &= \$3000 _\square \end{aligned}

--- B O N U S BONUS --- These are the prices of each pearl.

x 1 = $ 1400 x 2 = $ 1500 x 3 = $ 1600 x 4 = $ 1700 x 5 = $ 1800 x 6 = $ 1900 x 7 = $ 2000 x 8 = $ 2100 x 9 = $ 2200 x 10 = $ 2300 x 11 = $ 2400 x 12 = $ 2500 x 13 = $ 2600 x 14 = $ 2700 x 15 = $ 2800 x 16 = $ 2900 x 17 = $ 3000 x 18 = $ 2850 x 19 = $ 2700 x 20 = $ 2550 x 21 = $ 2400 x 22 = $ 2250 x 23 = $ 2100 x 24 = $ 1950 x 25 = $ 1800 x 26 = $ 1650 x 27 = $ 1500 x 28 = $ 1350 x 29 = $ 1200 x 30 = $ 1050 x 31 = $ 900 x 32 = $ 750 x 33 = $ 600 \begin{aligned} x_{1} &= \$1400 \\ x_{2} &= \$1500 \\ x_{3} &= \$1600 \\ x_{4} &= \$1700 \\ x_{5} &= \$1800 \\ x_{6} &= \$1900 \\ x_{7} &= \$2000 \\ x_{8} &= \$2100 \\ x_{9} &= \$2200 \\ x_{10} &= \$2300 \\ x_{11} &= \$2400 \\ x_{12} &= \$2500 \\ x_{13} &= \$2600 \\ x_{14} &= \$2700 \\ x_{15} &= \$2800 \\ x_{16} &= \$2900 \\ **x_{17} &= \$3000** \\ x_{18} &= \$2850 \\ x_{19} &= \$2700 \\ x_{20} &= \$2550 \\ x_{21} &= \$2400 \\ x_{22} &= \$2250 \\ x_{23} &= \$2100 \\ x_{24} &= \$1950 \\ x_{25} &= \$1800 \\ x_{26} &= \$1650 \\ x_{27} &= \$1500 \\ x_{28} &= \$1350 \\ x_{29} &= \$1200 \\ x_{30} &= \$1050 \\ x_{31} &= \$900 \\ x_{32} &= \$750 \\ x_{33} &= \$600 \end{aligned}

Albert Hesse
Apr 11, 2014

65000=x+ sum from n=1to 16 (16 x-100n) + sum from n=1 to 16 (x-150n)
65000=33x - sum from (n=1 to 16) (250n)
65000=33x - (17 * 250) * 8
65000=33x -34000
99000=33x
x=3000




Herbert Segismar
Mar 16, 2014

LET: 1st pearl=a 16th pearl=b middle(17th)pearl=P 18th pearl=c 33rd pearl=d x= common amount of all 33 pearls

KNOWN VALUES: a=x+0 M=150(16)+x =2400+x c=2400-100+x =2300+x

sum of a to P : =17x + 150(1.2.3.4......16) =17x +150(136) =17x +20400

sum of c to d : =16x + (100)(23.22.21....8) =16x +(100)(248) =16x + 24800

sum of a to d : 65000= 33x + 20400 + 24800 33x= 19800 x=600

P=x + 2400 =600 + 2400 = 3000

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...