Pentagonal Diagonal

Geometry Level 3

What is the length of a diagonal of a regular pentagon of unit side length? Give your answer to three decimal places.

Please post your solution!


The answer is 1.618.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Hypergeo H.
Apr 12, 2020

My solution:

Let ω \omega be the principal fifth root of unity.

ω 5 = 1 1 + ω + ω ² + ω ³ + ω 4 = 0 ( ) 1 ω ² + 1 ω + 1 + ω + ω ² = 0 ( u ² 2 ) + u + 1 = 0 ( u = ω + 1 ω ) u ² + u 1 = 0 ω + 1 ω = u = 5 1 2 ( ) \begin{aligned} \omega ^5 &= 1 \\ 1+\omega+\omega²+\omega³+\omega^4&=0 &&(*)\\ \frac 1{\omega²}+\frac 1\omega+1+\omega+\omega²&=0\\ (u²-2)+u+1&=0 &&(u=\omega+\frac 1\omega)\\ u²+u-1&=0\\ \omega+\frac 1\omega=u&=\frac {\sqrt {5}-1}2 &&(**)\\ \end{aligned}

Also, from ( ) (*) ,
1 + ω = ω ² ( 1 + ω + ω ² ) = ω ³ ( ω + 1 ω + 1 ) = ω ³ ( 5 + 1 2 ) (using (**) ) \begin{aligned} 1+\omega&=-\omega²(1+\omega+\omega²)\\ &=-\omega³ (\omega+\frac 1\omega+1)\\ &=-\omega³ \bigg(\frac {\sqrt{5}+1}2\bigg) &&\text{(using (**) )}\\ \end{aligned} .

Length of diagonal is 1 + ω = 5 + 1 2 = 1.618 \displaystyle |1+\omega |=\frac {\sqrt{5}+1}2 = \color{#D61F06}{1.618}
as ω ³ = 1 |\omega³|=1 .
The solution also happens to be the golden ratio.

I'm curious: Using roots of unity, for n 4 n\geqslant 4 , can we find all the diagonal lengths of any regular n n -gon with side length 1?

Pi Han Goh - 1 year, 2 months ago

Log in to reply

The same method can be applied for regular ( 2 n + 1 ) 2n+1) -gons of unit side lengths but it might not necessarily be easier to compute by hand!

Hypergeo H. - 1 year, 2 months ago
Pi Han Goh
Apr 12, 2020

Haha I'm sure there are many different approaches available online. What's your solution? Anyway, thanks for solving!

Hypergeo H. - 1 year, 2 months ago

Log in to reply

Use cosine rule, and find the exact form of sin 5 4 \sin 54^\circ . Pretty rudimentary stuff.

The interior angle of a regular pentagon is 18 0 × ( 1 2 5 ) = 10 8 180^\circ \times \left(1 - \frac25\right) = 108^\circ . Hence by cosine rule, the diagonal in question, D D satisfies D 2 = 2 1 2 ( 1 cos 10 8 ) D^2 = 2 \cdot1^2 (1 - \cos108^\circ) . Using the double angle identity, 1 cos ( 2 A ) = 2 sin 2 A 1 - \cos(2A) = 2\sin^2 A , we have D 2 = 4 sin 2 5 4 D = 2 sin 5 4 D^2 = 4 \sin^2 54^\circ \implies D = 2\sin54^\circ .

What's left is to find the exact form of sin 5 4 = cos 3 6 \sin54^\circ = \cos36^\circ . Since 3 6 × 4 = 18 0 3 6 36^\circ \times 4 = 180^\circ - 36^\circ , let B = 3 6 B= 36^\circ , we have 4 B = 18 0 B cos ( 4 B ) = cos ( 18 0 B ) = cos ( B ) 4B = 180^\circ - B \implies \cos(4B) = \cos(180^\circ - B) = -\cos(B) .

Apply the double angle formula repeatedly gives 2 ( 2 cos 2 B 1 ) 2 1 + cos B = 0 2 (2\cos^2 B - 1)^2 - 1 + \cos B = 0 . For simplicities sake, let y = cos B y = \cos B . We have 8 y 4 8 y 2 + y + 1 = 0 8y^4- 8y^2 + y + 1 = 0 , or ( y + 1 ) ( 2 y 1 ) ( 4 y 2 2 y 1 ) = 0 (y+1)(2y - 1)(4y^2 - 2y - 1) = 0 .

Since 0 < y = cos 3 6 > cos 6 0 = 1 2 0 < y = \cos36^\circ > \cos60^\circ = \frac12 , then y = 1 + 5 4 y = \frac{1 + \sqrt5}4 only (via quadratic formula).

Thus, the answer is D = 2 sin 5 4 = 2 cos 3 6 = 1 + 5 2 1.618 D = 2\sin54^\circ = 2\cos36^\circ = \frac{1+\sqrt5}2 \approx \boxed{1.618} .

Pi Han Goh - 1 year, 2 months ago

Log in to reply

Nice solution!

Hypergeo H. - 1 year, 2 months ago
Kano Boom
Apr 12, 2020

The length of red diagonal is 1 cos 36 ° + 1 cos 36 ° = 2 cos 36 ° = 5 + 1 2 1\,\text{cos}36\degree + 1\,\text{cos}36\degree = 2\,\text{cos}36\degree = \Large\frac{\sqrt{5}+1}{2} 1.618 \approx 1.618

But how would you know that cos 30 ° = 5 + 1 2 \cos \ang{30} = \frac {\sqrt{5}+1}2 ?

Hypergeo H. - 1 year, 2 months ago

Log in to reply

cos 36 ° = 1 2 sin 2 18 ° \text{cos }36\degree = 1 - 2\text{sin}^2 18\degree

Let θ = 18 ° \theta = 18\degree . Then 3 θ + 2 θ = 5 θ = 90 ° 3 θ = 90 ° 2 θ sin 3 θ = cos 2 θ 3 sin θ 4 sin 3 θ = 1 2 sin 2 θ 4 sin 3 θ 2 sin 2 θ 3 sin θ + 1 = 0 ( sin θ 1 ) ( 4 sin 2 θ + 2 sin θ 1 ) = 0 3\theta + 2\theta = 5\theta = 90\degree\Rightarrow 3\theta = 90\degree - 2\theta\newline \Rightarrow \text{sin }3\theta = \text{cos }2\theta\newline \Rightarrow 3\text{sin }\theta - 4\text{sin}^3 \theta = 1 - 2\text{sin}^2\theta\newline \Rightarrow 4\text{sin}^3\theta - 2\text{sin}^2\theta - 3\text{sin }\theta + 1 = 0 \newline \Rightarrow (\text{sin}\theta - 1)(4\text{sin}^2\theta + 2\text{sin}\theta - 1) = 0

Solving the quadratic equation we get

sin θ = sin 18 ° = 5 1 4 \text{sin}\theta = \text{sin}18\degree = \Large\frac{\sqrt{5} - 1}{4}

sin 2 18 ° = 6 2 5 16 = 3 5 8 \Rightarrow \text{sin}^2 18\degree = \Large\frac{6 - 2\sqrt{5}}{16} = \frac{3 - \sqrt{5}}{8}

2 sin 2 18 ° = 3 5 4 \Rightarrow 2\text{ sin}^2 18\degree = \Large\frac{3 - \sqrt{5}}{4}

cos 36 ° = 1 2 sin 2 18 ° = 1 3 5 4 = 1 + 5 4 \Rightarrow \text{cos }36\degree = 1 - 2\text{ sin}^2 18\degree = 1 - \Large\frac{3 - \sqrt{5}}{4} = \frac{1+ \sqrt{5}}{4}

Shikhar Srivastava - 1 year, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...