pentagon inscribed in triangle

Geometry Level 4

The figure shows a regular pentagon inscribed in an isosceles triangle. One side of the pentagon rests on the base of the triangle, while two pentagon vertices touch the legs of the triangle.

If the largest ratio of the pentagon area to the triangle area is given by a b \frac {\sqrt a}b , where a a and b b are integers and a a is square-free, submit a + b a+b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 20, 2020

Let the radius of the regular pentagon be 1 1 . This means that we have fixed the area of the pentagon to A p = 5 2 sin 7 2 = 5 sin 3 6 cos 3 6 A_p = \dfrac 52 \sin 72^\circ = 5 \sin 36^\circ \cos 36^\circ ; and we are looking for the smallest inscribing isosceles triangle.

The area of the triangle is A = A C B C A_\triangle = AC\cdot BC . Let the apex angle of the isosceles triangle be θ \theta . Then

A C = A D + D C = D E cot θ 2 + E F cos 1 8 = cos 1 8 cot θ 2 + 2 sin 3 6 cos 1 8 = cos 1 8 ( cot θ 2 + 2 sin 3 6 ) \begin{aligned} AC & = AD + DC \\ & = DE \cdot \cot \frac \theta 2 + EF \cdot \cos 18^\circ \\ & = \cos 18^\circ \cot \frac \theta 2 + 2 \sin 36^\circ \cos 18^\circ \\ & = \cos 18^\circ \left(\cot \frac \theta 2 + 2 \sin 36^\circ \right) \end{aligned}

And B C = A C tan θ 2 BC = AC \cdot \tan \frac \theta 2 . Therefore,

A = cos 2 1 8 ( cot θ 2 + 2 sin 3 6 ) 2 tan θ 2 = cos 2 1 8 ( 1 + 2 sin 3 6 tan θ 2 ) ( cot θ 2 + 2 sin 3 6 ) = cos 2 1 8 ( cot θ 2 + 4 sin 3 6 + 4 sin 2 3 6 tan θ 2 ) By AM-GM inequality cos 2 1 8 ( 4 sin 3 6 + 4 sin 3 6 ) Equality occurs when cot θ 2 = 2 sin 3 6 \begin{aligned} A_\triangle & = \cos^2 18^\circ \left(\cot \frac \theta 2 + 2 \sin 36^\circ \right)^2 \tan \frac \theta 2 \\ & = \cos^2 18^\circ \left(1 + 2 \sin 36^\circ \tan \frac \theta 2 \right)\left(\cot \frac \theta 2 + 2 \sin 36^\circ \right) \\ & = \cos^2 18^\circ \left(\blue{\cot \frac \theta 2} + 4 \sin 36^\circ + \blue{4 \sin^2 36^\circ \tan \frac \theta 2} \right) & \small \blue{\text{By AM-GM inequality}} \\ & \blue \ge \cos^2 18^\circ \left(\blue{4 \sin 36^\circ} + 4 \sin 36^\circ \right) & \small \blue{\text{Equality occurs when }\cot \frac \theta 2 = 2 \sin 36^\circ} \end{aligned}

min ( A ) = 8 cos 2 1 8 sin 3 6 \implies \min(A_\triangle) = 8\cos^2 18^\circ \sin 36^\circ

Then we have:

A p min ( A ) = 5 sin 3 6 cos 3 6 8 cos 2 1 8 sin 3 6 = 5 cos 3 6 4 cos 3 6 + 4 Note that cos 3 6 = 5 + 1 4 = 5 ( 5 + 1 ) 4 ( 5 + 1 + 4 ) = 5 ( 5 + 1 ) 4 ( 5 + 5 ) = 5 ( 5 + 1 ) 4 5 ( 5 + 1 ) = 5 4 \begin{aligned} \frac {A_p}{\min(A_\triangle)} & = \frac {5\sin 36^\circ \cos 36^\circ}{8\cos^2 18^\circ \sin 36^\circ} = \frac {5 \cos 36^\circ}{4\cos 36^\circ + 4} & \small \blue{\text{Note that }\cos 36^\circ = \frac {\sqrt 5 + 1}4} \\ & = \frac {5(\sqrt 5+1)}{4(\sqrt 5 + 1 +4)} = \frac {5(\sqrt 5+1)}{4(\sqrt 5 + 5)} \\ & = \frac {5(\sqrt 5+1)}{4\sqrt 5(\sqrt 5 + 1)} = \frac {\sqrt 5}4 \end{aligned}

Therefore a + b = 5 + 4 = 9 a+b = 5+4 = \boxed 9 .


Reference: AM-GM inequality

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...