Pentagon to Decagon

Geometry Level 2

The attached animation shows how to transform a given regular pentagon to a regular decagon (10 sides), namely by cutting the 5 corners out at specific distances from each vertex. If the side length of the original pentagon is 100, what is the side length of the resulting decagon ? Round your answer to 2 decimal places.


The answer is 44.72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zico Quintina
Jul 11, 2018

Let x x be the distance between a vertex of the decagon and the closest vertex of the pentagon, and y y be the side length of the decagon, as shown below on the left.

From the right triangle shown on the right, we get y 2 = x cos 3 6 \dfrac{y}{2} = x \cos 36^\circ , i.e. y = 2 x cos 3 6 y = 2x \cos 36^\circ . Then looking at the side length of the pentagon,

2 x + y = 100 2 x + 2 x cos 3 6 = 100 x ( 1 + cos 3 6 ) = 50 x = 50 1 + cos 3 6 \begin{array}{rl} 2x + y &= \ \ 100 \\ \\ 2x + 2x \cos 36^\circ &= \ \ 100 \\ \\ x \ (1 + \cos 36^\circ) &= \ \ 50 \\ \\ x &= \ \ \dfrac{50}{1 + \cos 36^\circ} \end{array}

and then the side length of the decagon is

y = 2 x cos 3 6 = 100 cos 3 6 1 + cos 3 6 44.72 \begin{array}{rl} y &= \ \ 2x \cos 36^\circ \\ \\ &= \ \ \dfrac{100 \cos 36^\circ}{1 + \cos 36^\circ} \\ \\ &\approx \ \ \boxed{44.72} \end{array}

By law of cosines,

x 2 = ( 50 x 2 ) 2 + ( 50 x 2 ) 2 2 ( 50 x 2 ) ( 50 x 2 ) ( cos 10 8 ) x^2=\left(50-\dfrac{x}{2}\right)^2+\left(50-\dfrac{x}{2}\right)^2-2\left(50-\dfrac{x}{2}\right)\left(50-\dfrac{x}{2}\right)(\cos 108^\circ)

x 2 = 2500 50 x + x 2 4 + 2500 50 x + x 2 4 2 cos 10 8 ( 2500 50 x + x 2 4 ) x^2=2500-50x+\dfrac{x^2}{4}+2500-50x+\dfrac{x^2}{4}-2 \cos 108^\circ \left(2500-50x+\dfrac{x^2}{4}\right)

0.3455 x 2 + 130.9 x 6545.08 = 0 0.3455x^2+130.9x-6545.08=0

Use the quadratic formula, to solve for x x , we have

x 130.9 ± ( 130.9 ) 2 4 ( 0.3455 ) ( 6545.08 ) 2 ( 0.3455 ) x\dfrac{-130.9\pm\sqrt{(-130.9)^2-4(0.3455)(-6545.08)}}{2(0.3455)}

x = 189.44 ± 123.16 x=-189.44\pm 123.16

get the positive value

x 44.72 \boxed{x\approx 44.72}

cos 108 \cos108 is radian, cos 10 8 \cos108^\circ is degree.

X X - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...