Pentagonal Kenmotu

Geometry Level 5

As shown in the figure, three congruent regular pentagons, sharing a common vertex, are inscribed in A B C \triangle ABC with the other two vertices of each pentagon touching the sides of A B C \triangle ABC of lengths 13 13 , 14 14 , and 15 15 .

If the side length of the pentagon is a b 2 5 + 5 + c \dfrac{a}{b \sqrt{2 \sqrt{5}+5}+c} , where a a , b b and c c are coprime positive integers, submit a + b + c a+b+c .

Similar Problems:


The answer is 3193.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 10, 2020

Generalization: After trying three Kenmoto problems involving equilateral triangle , square , and regular pentagon, I notice that we can reduce square and pentagon Kenmoto problems to an isosceles triangle Kenmoto problem, where the isosceles triangle is formed by joining the shared center vertex of the regular polygon to the two vertices touching the side of the inscribing triangle. Then the length of the leg of the isosceles triangle is given by:

r = 2 Δ a cos α 2 + b cos β 2 + c cos γ 2 where { α = 2 A θ β = 2 B θ γ = 2 C θ r = \frac {2\Delta}{a \cos \frac \alpha 2 + b \cos \frac \beta 2 + c \cos \frac \gamma 2} \text{ where } \begin{cases} \alpha = 2A - \theta \\ \beta = 2B - \theta \\ \gamma = 2C - \theta \end{cases}

where Δ \Delta is the area of the inscribing triangle, a a , b b , and c c and α \alpha , β \beta , and γ \gamma are the side lengths of the inscribing triangle and the angles between the isosceles triangles opposite vertices A A , B B , and C C respectively, and θ \theta is the apex angle of the isosceles triangles. For equilateral triangle θ 3 = 6 0 \theta_3 = 60^\circ , for square θ 4 = 9 0 \theta_4 = 90^\circ , and regular pentagon θ 5 = 3 6 \theta_5 = 36^\circ . Putting in the values, we get

r 3 = 61950 35280 3 181 r 4 = 1365 2 463 r 5 = 5460 295 ( 5 1 ) + 168 2 ( 5 + 5 ) \begin{aligned} r_3 & = \frac {61950-35280\sqrt 3}{181} \\ r_4 & = \frac {1365\sqrt 2}{463} \\ r_5 & = \frac {5460}{295(\sqrt 5 -1)+168\sqrt{2(5+\sqrt 5)}} \end{aligned}

And the side length of the pentagon s = r 5 2 cos 3 6 = 2730 168 5 + 2 5 = 295 s= \dfrac {r_5}{2 \cos 36^\circ} = \dfrac {2730}{168\sqrt{5+2\sqrt 5}=295} . Therefore the required answer 2730 + 168 + 295 = 3195 2730+168+295=\boxed{3195} .

Very elegant!

Julian Poon - 6 months, 2 weeks ago

Log in to reply

Glad that you like it

Chew-Seong Cheong - 6 months, 2 weeks ago

Figure 1 Figure 1 Let’s give a solution similar to the one used in Triangular Kenmotu and in A Squared Triangle . The original idea of this approach, where we use only tools of elementary geometry, belongs to @Chew-Seong Cheong.

Let L X M = α \angle LXM = \alpha , K X J = β \angle KXJ = \beta , and O X P = γ \angle OXP = \gamma (figure 1). We note that X P O \triangle XPO is isosceles, thus, X P O = 9 0 γ 2 \angle XPO = 90^\circ - \dfrac \gamma 2 , hence, M P B = 180 ( 90 γ 2 ) 72 = γ 2 + 18 \angle MPB=180{}^\circ -\left( 90{}^\circ -\dfrac{\gamma }{2} \right)-72{}^\circ =\dfrac{\gamma }{2}+18{}^\circ , thus, L M X = L M P 72 = ( γ 2 + 18 + B ) 72 = B + γ 2 54 \angle LMX=\angle LMP-72{}^\circ =\left( \dfrac{\gamma }{2}+18{}^\circ +B \right)-72{}^\circ =B+\dfrac{\gamma }{2}-54{}^\circ .

In isosceles X M L \triangle XML , L X M + 2 L M X = 180 a + 2 ( B + γ 2 54 ) = 180 a = 288 2 B γ . \angle LXM+2\cdot \angle LMX=180{}^\circ \Rightarrow a+2\left( B+\frac{\gamma }{2}-54{}^\circ \right)=180{}^\circ \Rightarrow a=288{}^\circ -2B-\gamma. Similarly, β = 288 2 A γ \beta =288{}^\circ -2A-\gamma .

Moreover,

α + β + γ + 3 36 = 360 α + β + γ = 252 ( 288 2 B γ ) + ( 288 2 A γ ) + γ = 252 \begin{aligned} \alpha +\beta +\gamma +3\cdot 36{}^\circ & =360{}^\circ \\ \alpha +\beta +\gamma & =252{}^\circ \\ \left( 288{}^\circ -2B-\gamma \right)+\left( 288{}^\circ -2\Alpha -\gamma \right)+\gamma & =252{}^\circ \\ \end{aligned} γ = 324 2 ( A + B ) = 324 2 ( 180 C ) = 2 C 36 γ 2 = C 18 \Rightarrow \gamma =324{}^\circ -2\left( A+B \right)=324{}^\circ -2\left( 180{}^\circ -C \right)=2C-36{}^\circ \Rightarrow \dfrac{\gamma }{2}=C-18{}^\circ Similarly, α 2 = A 18 \dfrac{\alpha}{2}=A-18{}^\circ and β 2 = B 18 \dfrac{\beta}{2}=B-18{}^\circ .

Using Heron’s formula we find the area of A B C \triangle ABC : [ A B C ] = 84 \left[ ABC \right]=84 .

Let the diagonal length of the pentagons be d d and the altitudes from X X to B C BC , C A CA and A B AB be h a h_a , h b h_b , and h c h_c respectively. Then the area of A B C \triangle ABC is also given by: h a B C + h b C A + h c A B 2 = [ A B C ] 1 2 ( 15 d cos α 2 + 13 d cos β 2 + 14 d cos γ 2 ) = 84 ( 1 ) \begin{aligned} \dfrac {h_a\cdot BC + h_b \cdot CA + h_c \cdot AB}2 & = [ABC] \\ \dfrac 12 \left(15 d \cos \dfrac \alpha 2 + 13 d \cos \dfrac \beta 2 + 14 d \cos \dfrac \gamma 2 \right) & = 84 \ \ \ \ \ (1)\end{aligned}

In order to calculate cos α 2 \cos \dfrac \alpha 2 , cos β 2 \cos \dfrac \beta 2 and cos γ 2 \cos \dfrac \gamma 2 , we first find the sines and cosines of the angles of A B C \triangle ABC .
We notice that A B C \triangle ABC is a compound of a 5 5 - 12 12 - 13 13 and a 9 9 - 12 12 - 15 15 right-angled triangles (figure 2). Figure 2 Figure 2

Thus, it is easy to find that cos A = 5 13 \cos A=\dfrac{5}{13} , sin A = 12 13 \sin A=\dfrac{12}{13} , cos B = 9 15 \cos B=\dfrac{9}{15} , sin A = 12 15 \sin A=\dfrac{12}{15} .
By sine law, sin C 14 = sin A 15 sin C = 14 14 12 13 sin C = 56 65 \dfrac{\sin C}{14}=\dfrac{\sin A}{15}\Rightarrow \sin C=\dfrac{14}{14}\cdot \dfrac{12}{13}\Rightarrow \sin C=\dfrac{56}{65} . cos C = 1 sin 2 C = 1 ( 56 65 ) 2 cos C = 33 65 \cos C=\sqrt{1-{{\sin }^{2}}C}=\sqrt{1-{{\left( \dfrac{56}{65} \right)}^{2}}}\Rightarrow \cos C=\dfrac{33}{65}

Combining the results obtained, we get

cos α 2 = cos ( A 18 ) = cos A cos 18 + sin A sin 18 = 5 13 10 + 2 5 4 + 12 13 5 1 4 \cos \frac{\alpha }{2}=\cos \left( A-18{}^\circ \right)=\cos A\cdot \cos 18{}^\circ +\sin A\cdot \sin 18{}^\circ =\frac{5}{13}\cdot \frac{\sqrt{10+2\sqrt{5}}}{4}+\frac{12}{13}\cdot \frac{\sqrt{5}-1}{4} Similarly, cos β 2 = cos ( B 18 ) = 9 15 10 + 2 5 4 + 12 15 5 1 4 \cos \dfrac{\beta }{2}=\cos \left( B-18{}^\circ \right)= \dfrac{9}{15}\cdot \dfrac{\sqrt{10+2\sqrt{5}}}{4}+\dfrac{12}{15}\cdot \dfrac{\sqrt{5}-1}{4} cos γ 2 = cos ( C 18 ) = 33 65 10 + 2 5 4 + 56 65 5 1 4 \cos \dfrac{\gamma }{2}=\cos \left( C-18{}^\circ \right)= \dfrac{33}{65}\cdot \dfrac{\sqrt{10+2\sqrt{5}}}{4}+\dfrac{56}{65}\cdot \dfrac{\sqrt{5}-1}{4}

Finally, after substitutions and simplification,

( 1 ) d [ 168 65 10 + 2 5 + 59 13 ( 5 1 ) ] = 84 \left( 1 \right)\Rightarrow d\left[ \dfrac{168}{65}\cdot \sqrt{10+2\sqrt{5}}+\dfrac{59}{13}\cdot \left( \sqrt{5}-1 \right) \right]=84 which solves to
d = 5460 295 ( 5 1 ) + 168 2 ( 5 + 5 ) d=\dfrac{5460}{295\left( \sqrt{5}-1 \right)+168\sqrt{2\left( 5+\sqrt{5} \right)}} In a regular pentagon of side s s and diagonal d d it holds d s = φ \dfrac{d}{s}=\varphi , where φ = 1 + 5 2 \varphi =\dfrac{1+\sqrt{5}}{2} is the golden ratio. Hence, s = d φ s = 5460 295 ( 5 1 ) + 168 2 ( 5 + 5 ) 2 1 + 5 s=\dfrac{d}{\varphi }\Rightarrow s=\dfrac{5460}{295\left( \sqrt{5}-1 \right)+168\sqrt{2\left( 5+\sqrt{5} \right)}}\cdot \dfrac{2}{1+\sqrt{5}} which simplifies to
s = 2730 168 5 + 2 5 + 295 s=\dfrac{2730}{168\sqrt{5+2\sqrt{5}}+295} For the answer, a + b + c = 2730 + 168 + 295 = 3193 a+b+c=2730+168+295=\boxed{3193} .

Note: In the figure we see that two of the pentagons do overlap, unlike the case of equilateral triangles and squares inscribed in the same triangle A B C \triangle ABC . Indeed,
β = 2 c o s 1 ( 9 15 10 + 2 5 4 + 12 15 5 1 4 ) 70.26 < 2 36 \beta =2co{{s}^{-1}}\left( \frac{9}{15}\cdot \frac{\sqrt{10+2\sqrt{5}}}{4}+\frac{12}{15}\cdot \frac{\sqrt{5}-1}{4} \right)\approx 70.26{}^\circ <2\cdot 36{}^\circ .

Thank you again for the detailed solution.

Maria Kozlowska - 7 months ago

Log in to reply

You wellcome. It's a nice problem. I wonder if we can generalise it for n-gons with an odd number of sides...

Thanos Petropoulos - 7 months ago

Log in to reply

I think in general the same pattern works for any set of similar isosceles triangles on the sides and then congruent ones with the common vertex. For pentagon in this case it is equivalent to 72 x 72 x 36 triangles. For square it is 45 x 45 x 90 triangles. For larger n, n-gons will start to overlap quickly. This will tie in to the Kiepert Hyperbola.

Maria Kozlowska - 7 months ago
Maria Kozlowska
Nov 9, 2020

The common vertex is the triangle center X(3396) which is isogonal conjugate of X(1139) - OUTER PENTAGON POINT. In plain terms, the point can be constructed by creating regular pentagons outward on triangle sides and connecting outermost points to the opposite vertices of the triangle. This will produce point X(1139). Then the connecting lines need to be reflected on angle bisectors of corresponding angles. This will produce point X(3396). The Trilinear Coordinates are equivalent to cos ( A π / 10 ) : cos ( B π / 10 ) : cos ( C π / 10 ) \cos(A-\pi/10) : \cos(B-\pi/10) : \cos(C-\pi/10)

The numbers can be obtained by using formulae for Exact Trilinear Coordinates . a=2730 , b= 168,c= 295.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...