Pentagonal Numbers - Finding The Formula

Which of the following functions satisfy f ( n + 1 ) f ( n ) = 3 n + 1 f(n+1) - f(n) = 3n+1 and f ( 1 ) = 1 f(1) = 1 ?


Do you understand why this gives us the formula for the n n th Pentagonal Number?

This question is part of Calvin's set What Makes A Number Pentagonal?

f ( n ) = n ( n + 1 ) 2 f(n) = \frac{ n(n+1)}{2} f ( n ) = ( 3 n + 1 ) 2 2 f(n) = \frac{ (3n+1)^2} { 2} f ( n ) = ( 3 n 1 ) ( n ) 2 f(n) = \frac{ (3n-1)(n) } { 2} f ( n ) = ( n + 1 ) ( 3 n + 2 ) 2 f(n) = \frac{ (n+1)(3n+2) } { 2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Discussions for this problem are now closed

Nidhin N
May 2, 2014

f ( n + 1 ) f ( n ) = 3 n + 1 f(n+1)-f(n)=3n+1

Put n+1=N

f ( N ) f ( N 1 ) = 3 N 2 f(N)-f(N-1)=3N-2

f ( N 1 ) f ( N 2 ) = 3 ( N 1 ) 2 f(N-1)-f(N-2)=3(N-1)-2

.

.

.

f ( 2 ) f ( 1 ) = 3 × 2 2 f(2)-f(1)=3 \times 2-2

Take the sum of all equations

f ( N ) f ( N 1 ) + f ( N 1 ) f ( N 2 ) + . . . . . . f ( 2 ) + f ( 2 ) f ( 1 ) = 3 i = 2 N N 2 ( N 1 ) f(N)-f(N-1)+f(N-1)-f(N-2)+......-f(2)+f(2)-f(1)=3\sum_{i=2}^{N}N - 2(N-1)

f ( N ) 1 = 3 ( N ( N + 1 ) 2 1 ) 2 N + 2 f(N)-1=3( \frac {N(N+1)} {2}-1)-2N+2

f ( N ) = [ 3 ( N 2 + N 2 ) 4 N + 6 ] / 2 f(N)=[3(N^2+N-2)-4N+6]/2

= 3 N 2 + 3 N 4 N 2 = \frac {3N^2+3N-4N} {2}

= 3 N 2 N 2 = \frac {3N^2-N} {2}

= N ( 3 N 1 ) 2 = \frac {N(3N-1)} {2}

Change of variables:

f ( n ) = ( 3 n 1 ) ( n ) 2 f(n)= \frac {(3n-1)(n)} {2}

Chung Kevin
May 2, 2014

We test the given functions in the options. Firstly, because we want f ( 1 ) = 1 f(1) = 1 , we only have to consider the options of f ( n ) = n ( n + 1 ) 2 f(n) = \frac{ n(n+1) } {2} or f ( n ) = ( 3 n 1 ) n 2 f(n) = \frac{ (3n-1) n } { 2} .

Next, we check the other condition. For f ( n ) = n ( n + 1 ) 2 f(n) = \frac{ n(n+1) } { 2} , we have f ( n + 1 ) f ( n ) = ( n + 1 ) ( n + 2 ) n ( n + 1 ) 2 = n + 1 f(n+1) - f(n) = \frac{ (n+1) (n+2) - n (n+1) } { 2} = n+1 , which doesn't satisfy the condition.

For f ( n ) = n ( 3 n 1 ) 2 f(n) = \frac{ n(3n-1) } { 2} , we have f ( n + 1 ) f ( n ) = ( n + 1 ) ( 3 n + 2 ) n ( 3 n 1 ) 2 = 3 n + 1 f(n+1) - f(n) = \frac{ (n+1) (3n+2) - n (3n-1) } { 2} = 3n +1 , hence this is the answer.

I don't like this solution. You are just putting formula into the choices. Not the way to solve a problem. Nitin below got it right.

Sung Cho - 7 years, 1 month ago

sir. this formula is first principle method, then the coefficient 2 is use here how and why are u using how, can't understand, let explan.

Sidra Wagan - 7 years, 1 month ago
Mahdi Al-kawaz
May 1, 2014

f ( 1 ) = 1 f(1)=1

f ( 2 ) = 1 + 4 = 5 f(2)=1+4=5

f ( 3 ) = 1 + 4 + 7 = 12 f(3)=1+4+7=12

. . . ...

f ( n ) = 1 + 4 + 7 + . . . + ( 3 n 2 ) = n ( 1 + 3 n 2 ) 2 = 3 n 2 n 2 f(n)=1+4+7+...+(3n-2)=\frac{n (1+3n-2)}{2}=\boxed{\frac{3n^{2}-n}{2}}

i don't know...i just guess...

Kudo Shinichi - 7 years, 1 month ago

yeah. me too. :)

Mark Laurenz Lorenzo - 7 years, 1 month ago

Your solution doesn't answer the question that is posed.

It asks you to find f ( n ) f(n) such that f ( n + 1 ) f ( n ) = 3 n + 1 f(n+1) - f(n) = 3n+1 .

Calvin Lin Staff - 7 years, 1 month ago

f(2)-f(1)=3 2+1, similarly it can be written till f(n)-f(n-1)=3 n+1, adding all these functions , by telescopic summation what we get is f(n)-f(1)=3(n+(n-1)+n(-2).......+2)+n*1; computing the value of f(n) from here will result in f(n)=n(3n-1)/2;

vignesh somu - 7 years, 1 month ago
Michael Mendrin
May 14, 2014

U s e t h e m e t h o d o f f i n i t e d i f f e r e n c e s t o f i n d t h e p o l y n o m i a l f o r a n y i n t e g e r s e q u e n c e s t h a t c a n b e e x p r e s s e d b y a p o l y n o m i a l . 1 , 5 , 12 , 22 , 35 4 , 7 , 10 , 12 3 , 3 , 3 0 , 0 L e t a 0 = 1 , a 1 = 4 , a 2 = 3 , a 3 = 0 , . . . , t h e f i r s t i n t e g e r i n s u c c e s s i v e r o w s . T h e n t h e p o l y n o m i a l t h a t w i l l g i v e t h e n t h t e r m i s : a 0 ( n 1 ) ! 0 ! ( n 1 0 ) ! + a 1 ( n 1 ) ! 1 ! ( n 1 1 ) ! + a 2 ( n 1 ) ! 2 ! ( n 1 2 ) ! + a 3 ( n 1 ) ! 3 ! ( n 1 3 ) ! + . . . w h i c h s i m p l i f i e s t o 1 2 n ( 3 n 1 ) f o r t h i s i n t e g e r s e q u e n c e g i v e n . Use\quad the\quad method\quad of\quad finite\quad differences\quad to\quad find\quad the\quad polynomial\quad for\\ any\quad integer\quad sequences\quad that\quad can\quad be\quad expressed\quad by\quad a\quad polynomial.\\ 1,5,12,22,35\\ 4,7,10,12\\ 3,3,3\\ 0,0\\ Let\quad a0=1,\quad a1=4,\quad a2=3,\quad a3=0,...,the\quad first\quad integer\quad in\quad successive\quad rows.\\ Then\quad the\quad polynomial\quad that\quad will\quad give\quad the\quad nth\quad term\quad is:\\ a0\frac { (n-1)! }{ 0!(n-1-0)! } +a1\frac { (n-1)! }{ 1!(n-1-1)! } +a2\frac { (n-1)! }{ 2!(n-1-2)! } +a3\frac { (n-1)! }{ 3!(n-1-3)! } +...\\ which\quad simplifies\quad to\quad \frac { 1 }{ 2 } n(3n-1)\quad for\quad this\quad integer\quad sequence\quad given.\\ \\ \\ \\

Debolena Basak
May 5, 2014

the pentagonal nos.are as follows:

1
1+4=5
1+4+7=12
1+4+7+10=22
1+4+7+10+13=35
.....
this is an AP series with d=3
sum of A.P series =(n/2){2a+(n-1)d)
putting d=3 and a=1, we get (n/2)(3n-1) which is the required ans.

Lira Zabin
May 4, 2014

ONLY f(n)=(3n-1)n/2 satisfy the two requirements like f(1)=1 and f(n+1)-f(n)=4

The solution is how we can examine that answer by match into the right answer

Vishnudatt Gupta
May 10, 2014

by putting simple values

we get d as answer

for, f(n+1)-f(n)=(n+1)(n+2)-n(n+1)/2=n+1 for n>1,which contradicts,where f(n)=n(n+1)/2 for f(n)=(3n-1)n/2, f(n+1)-f(n)=3n+1,hence the result

Asad Ullah
May 5, 2014

By putting the values 1,2,3... if gives the result of the sequence means that formula is correct. as f(n)=(3n-1)(n)/2

Mahabubur Rahman
May 3, 2014

just see the pattern is 1,5 , 12 , 22 , 35 , 51 ... => 4, 7 , 10 , 13 , 16 , 19 ... incise 3 in every time.. then we make a equation like (3n^2-1) / 2

Helena Marcia
May 2, 2014

If we know f(3)=12, you just try the options. But that's not beautifil, I admit.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...