Percentage calculation challenge (2)

Algebra Level 4

2016 % × 2015 % × 2014 % × × 3 % × 2 % × 1 % = 2016 ! 1 0 x % \large 2016\text{\%}\times2015\text{\%}\times2014\text{\%}\times\dots\times3\text{\%}\times2\text{\%}\times1\text{\%} = \dfrac{2016!}{10^{x}\text{\%}}

Find x x which satisfies the equation above .

Notation : ! ! denotes the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is 4034.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tommy Li
Jul 3, 2016

2016 % × 2015 % × 2014 % × × 3 % × 2 % × 1 % = 2016 ! 1 0 x % \large 2016\text{\%}\times2015\text{\%}\times2014\text{\%}\times\dots\times3\text{\%}\times2\text{\%}\times1\text{\%} = \dfrac{2016!}{10^{x}\text{\%}}

( 2016 × 2015 × 2014 × × 3 × 2 × 1 ) × ( 1 0 2 × 1 0 2 × 1 0 2 × × 1 0 2 2016 times ) = 2016 ! 1 0 x 2 \large (2016\times2015\times2014\times\dots\times3\times2\times1)\times(\underbrace{10^{-2}\times10^{-2}\times10^{-2}\times\dots\times10^{-2}}_{2016\text{times}}) = \dfrac{2016!}{10^{ \color{#3D99F6}{x-2} }}

2016 ! × 1 0 4032 = 2016 ! 1 0 x 2 \large 2016!\times 10^{-4032} = \dfrac{2016!}{10^{x-2}}

2016 ! 1 0 4032 = 2016 ! 1 0 x 2 \dfrac{2016!}{10^{4032}} = \dfrac{2016!}{10^{x-2}}

x = 4032 + 2 = 4034 x = 4032+2 = 4034

Note : % = 1 0 2 \text{\%} = 10^{-2}

Great solution. I'd have my method posted up soon.

Armain Labeeb - 4 years, 11 months ago
Armain Labeeb
Jul 5, 2016

Relevant wiki: Rules of Exponents - Algebraic

We know,

x % = x 100 x\text{\%}=\frac{x}{100}

2016 % × 2015 % × 2014 % × × 3 % × 2 % × 1 % = 2016 100 × 2015 100 × 2014 100 × × 3 100 × 2 100 × 1 100 2016 % × 2015 % × 2014 % × × 3 % × 2 % × 1 % = 2016 × 2015 × 2014 × × 3 × 2 × 1 100 × 100 × 100 × × 100 × 100 2016 t i m e s 2016 % × 2015 % × 2014 % × × 3 % × 2 % × 1 % = 2016 ! 10 0 2016 \begin{aligned} \because \quad \quad 2016\text{\%}\times 2015\text{\%}\times 2014\text{\%}\times \dots \times 3\text{\%}\times 2\text{\%}\times 1\text{\%} & =\frac { 2016 }{ 100 } \times \frac { 2015 }{ 100 } \times \frac { 2014 }{ 100 } \times \dots \times \frac { 3 }{ 100 } \times \frac { 2 }{ 100 } \times \frac { 1 }{ 100 } \\ \Longrightarrow 2016\text{\%}\times 2015\text{\%}\times 2014\text{\%}\times \dots \times 3\text{\%}\times 2\text{\%}\times 1\text{\%} & =\frac { 2016\times 2015\times 2014\times \dots \times 3\times 2\times 1 }{ \underbrace { 100\times 100\times 100\times \dots \times 100\times 100 } } \\& \quad \quad \quad \quad \quad \quad \quad \quad 2016\quad times \\ \Longrightarrow 2016\text{\%}\times 2015\text{\%}\times 2014\text{\%}\times \dots \times 3\text{\%}\times 2\text{\%}\times 1\text{\%} & =\frac { 2016! }{ 100^{ 2016 } } \end{aligned}

Substitute 2016 × 2015 % × 2014 % × × 3 % × 2 % × 1 % = 2016 ! 10 0 2016 2016\times 2015\text{\%}\times 2014\text{\%}\times \dots \times 3\text{\%}\times 2\text{\%}\times 1\text{\%} =\frac { 2016! }{ 100^{ 2016 } } into

2016 % × 2015 % × 2014 % × × 3 % × 2 % × 1 % = 2016 ! 1 0 x % 2016\text{\%}\times 2015\text{\%} \times2014\text{\%}\times \dots \times 3\text{\%}\times 2\text{\%}\times 1\text{\%} = \frac{2016!}{10^{x}\text{\%}} we have:

2016 ! 10 0 2016 = 2016 ! 1 0 x % \large \frac { 2016! }{ 100^{ 2016 } } =\frac { 2016! }{ 10^{ x }\% }

Cancel out numerators, we have:

10 0 2016 = 10 x % ( 1 0 2 ) 2016 = 1 0 x 100 100 × ( 1 0 2 ) 2016 = 1 0 x 1 0 2 × ( 1 0 2 ) 2016 = 1 0 x 1 0 2 × 1 0 2 × 2016 = 1 0 x 1 0 2 + 4032 = 1 0 x 1 0 4034 = 1 0 x x = 4034 \begin{aligned} 100^{ 2016 } & ={ 10 }^{ x }{ \text{\%} } \\ (10^{ 2 })^{ 2016 } & =\frac { 10^{ x } }{ 100 } \\ 100\times (10^{ 2 })^{ 2016 } & =10^{ x } \\ 10^{ 2 }\times (10^{ 2 })^{ 2016 } & =10^{ x } \\ 10^{ 2 }\times 10^{ 2\times 2016 } & =10^{ x } \\ 10^{ 2+4032 } & =10^{ x } \\ 10^{ 4034 }\quad & =10^{ x } \\ x & =\boxed{4034} \end{aligned} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...