Percentages calculation challenge

Algebra Level 4

1 000...000 2016 x digits × 1 %%%...%%% 888 x terms of % 1 0 2016 = 1 000...000 202 x digits % \frac{1\overbrace{\text{000...000}}^{2016x\ \text{digits}} \times 1\overbrace{\text{\%\%\%...\%\%\%}}^{888x\ \text{terms of \%}}}{10^{2016}}=1\underbrace{\text{000...000}}_{202x\ \text{digits}}\text{\%}

Find x x which satisfies the above equation.


The answer is 53.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tommy Li
Jul 3, 2016

1 000...000 2016 x digits × 1 %%%...%%% 888 x terms of % 1 0 2016 = 1 000...000 202 x digits % \dfrac{1\underbrace{\text{000...000}}_{2016x\ \text{digits}} \times 1\underbrace{\text{\%\%\%...\%\%\%}}_{888x\ \text{terms of \%}}}{10^{2016}}=1\underbrace{\text{000...000}}_{202x\ \text{digits}}\text{\%}

1 0 2016 x × 1 0 888 x × ( 2 ) 1 0 2016 = 1 0 202 x 2 \dfrac{10^{2016x} \times 10^{888x \times (-2)}}{10^{2016}}=10^{202x-2}

1 0 2016 x + 888 x × ( 2 ) 2016 = 1 0 202 x 2 10^{2016x+888x\times (-2)-2016} =10^{202x-2}

2016 x + 888 x × ( 2 ) 2016 = 202 x 2 2016x+888x \times (-2)-2016=202x-2

38 x = 2014 38x=2014

x = 53 x=53

Exactly way of solving - Great !

Maybe you should include a part where you substitute your exponents or set both sides in the log of 10 to make it more obvious to others - just a suggestion ;)

Lukas Henke - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...