Perfect Square

Which of the following is a perfect square?

A. 98 ! × 99 ! 98!\times99!

B. 99 ! × 100 ! 99!\times100!

C. 98 ! × 100 ! 98!\times100!

D. 100 ! × 101 ! 100!\times101!

E. 99 ! × 101 ! 99!\times101!

Notation: ! Is a factorial notation, for example, 3 ! = 3 × 2 × 1 3! = 3\times 2\times 1

A B C D E

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Zach Abueg
Jun 30, 2017

All of the products are of the form n ! ( n + 1 ) ! n! \cdot (n + 1)! or n ! ( n + 2 ) ! n! \cdot (n + 2)! . Observe that

n ! ( n + 1 ) ! = ( n ! ) 2 ( n + 1 ) \displaystyle n! \cdot (n + 1)! = (n!)^2 \cdot (n + 1)

n ! ( n + 2 ) ! = ( n ! ) 2 ( n + 1 ) ( n + 2 ) \displaystyle n! \cdot (n + 2)! = (n!)^2 \cdot (n + 1)(n + 2)

Thus, each product p p is a perfect square if and only if p ( n ! ) 2 \displaystyle \frac{p}{(n!)^2} is also a perfect square.

Only B \boxed{B} fits that criteria:

B = 99 ! 100 ! = ( 99 ! ) 2 100 B = 99! \cdot 100! = (99!)^2 \cdot 100

Note that a 2 b 2 = ( a b ) 2 = m 2 a^2 \cdot b^2 = (ab)^2 = m^2 for some integer m m .

Thank you for sharing your solution, got my vote too.

Hana Wehbi - 3 years, 11 months ago
Ravneet Singh
Jun 30, 2017

A. 98 ! × 99 ! = 98 ! × 99 × 98 ! = ( 98 ! ) 2 × 99 98!\times99! = 98!\times 99\times 98! = (98!)^2\times 99 \implies not a perfect square.

B. 99 ! × 100 ! = 99 ! × 100 × 99 ! = ( 99 ! ) 2 × 100 = ( 99 ! × 10 ) 2 99!\times100! = 99!\times 100\times 99! = (99!)^2\times 100 = (99!\times 10)^2 \implies a perfect square .

C. 98 ! × 100 ! = 98 ! × 100 × 99 × 98 ! = ( 98 ! ) 2 × 100 × 99 98!\times100! = 98!\times 100\times 99\times 98! = (98!)^2\times 100 \times 99 \implies not a perfect square.

D. 100 ! × 101 ! = 100 ! × 101 × 100 ! = ( 100 ! ) 2 × 101 100!\times101! = 100!\times 101\times 100! = (100!)^2\times 101 \implies not a perfect square.

E. 99 ! × 101 ! = 99 ! × 101 × 100 × 99 ! = ( 99 ! ) 2 × 101 × 100 99!\times101! = 99!\times 101\times 100\times 99! = (99!)^2\times 101\times 100 \implies not a perfect square.

Thank you for sharing your solution, got my vote too.

Hana Wehbi - 3 years, 11 months ago

= n ! ( n + 1 ) ! = n! \cdot (n + 1)!

= n ! n ! ( n + 1 ) = n! \cdot n!(n+1)

= ( n ! ) 2 ( n + 1 ) = (n!)^2 \cdot (n + 1)

( n ! ) 2 ( n + 1 ) = ( n ! ) 2 n + 1 \sqrt { { (n!) }^{ 2 }(n+1) } =\sqrt { { (n!) }^{ 2 } } \cdot \sqrt { n+1 } is integer.

So, the answer is 99 ! × 100 ! 99! \times 100!

Thank you.

Hana Wehbi - 3 years, 11 months ago
Hana Wehbi
Jun 30, 2017

Only B, 99 ! × 100 ! = ( 99 ! ) 2 × 100 = 99 ! 2 × 1 0 2 99! \times 100! = (99!)^2 \times 100 = 99!^2 \times 10^2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...