Is the following a perfect square?
for some positive integer .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let N 2 = ( 3 n ) ( 4 n ) ( 5 n ) ( 6 n ) = ( 2 1 1 ⋅ 3 5 ⋅ 5 2 ( n − 3 ) ! ( n − 4 ) ! ( n − 5 ) ! ( n − 6 ) ! ( n ! ) 4 ) − 2 = 2 5 ⋅ 3 2 ⋅ 5 ( n ! ) 2 ( 6 ( n − 3 ) ( ( n − 4 ) ! ) 2 ( n − 5 ) ( ( n − 6 ) ! ) 2 1 ) − 2 = 4 8 0 ( n − 3 ) ( n − 4 ) ! ( ( n − 6 ) ! ) ( n ! ) 2 ( 6 ( n − 3 ) ( n − 5 ) 1 ) − 2 Notice that for n ≥ 6 , N is perfect square number if 6 ( n − 3 ) ( n − 5 ) is a perfect square number or 6 ( n − 3 ) ( n − 5 ) must be in the form of 3 6 k 2 ie 6 ( n − 5 ) ( n − 3 ) = 3 6 k 2 ⟹ ( n − 3 ) ( n − 5 ) = 6 k 2 k ≥ 1 Expanding the Left hand side we have n 2 − 8 n + 1 5 − 6 k 2 = 0 ⟹ n = 4 ± 6 k 2 + 1
Giving the possible values of n = 9 , 5 3 for certain values of k = 2 , 2 0