Almost Perfect square

Algebra Level 3

For a certain integer n n , 2 200 31 × 2 192 + 2 n 2^{200} - 31 \times 2^{192} + 2^n is a perfect square. What is n n ?


The answer is 198.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rohit Sachdeva
Sep 7, 2014

2 200 ( 2 5 1 ) 2 192 + 2 n 2^{200}-(2^{5}-1)2^{192}+2^{n}

= 2 200 2 197 + 2 192 + 2 n 2^{200}-2^{197}+2^{192}+2^{n}

= 2 192 ( 256 32 + 1 + 2 n 192 ) 2^{192}(256-32+1+2^{n-192})

= 2 192 ( 225 + 2 n 192 ) 2^{192}(225+2^{n-192})

Now, 225 + 2 6 = 225 + 64 = 289 = 1 7 2 225+2^{6} = 225 + 64 = 289= 17^{2}

Hence, n 192 = 6 n-192=6

n = 198 \boxed{n=198}

The "before last" step is simply to figure out the value of p , q p,q in the pythagorean triplet ( 15 , p , q ) (15,p,q) by casework which comes out to be p = 8 , q = 17 p=8,q=17 thus giving us the value of n = 198 n=198 when we compare with the given expression.

Prasun Biswas - 6 years, 5 months ago
Chew-Seong Cheong
Dec 12, 2014

We note that:

2 200 31 ˙ 2 192 = ( 2 8 31 ) ˙ 2 192 = ( 256 31 ) ˙ 2 192 2^{200}-31\dot{}2^{192} = (2^8-31)\dot{}2^{192} = (256-31)\dot{}2^{192}

= 225 ˙ 2 192 = 1 5 2 ˙ 2 192 = 225\dot{} 2^{192} = 15^2\dot{}2^{192}

Now consider the perfect square:

(15+x)^2\dot{} 2^{192} = (15^2+30x+x^2)\dot{} 2^{192} = 15^\dot{} 2^ {192} + (30x+x^2)\dot{} 2^{192}

= 2 200 31 ˙ 2 192 + ( 30 x + x 2 ) ˙ 2 192 =2^{200}-31\dot{}2^{192} + (30x+x^2)\dot{} 2^{192}

For 2 200 31 ˙ 2 192 + 2 n 2^{200}-31\dot{}2^{192} + 2^n to be a perfect square, we equate

( 30 x + x 2 ) ˙ 2 192 = 2 n (30x+x^2)\dot{} 2^{192} = 2^n

and find that it is true when x = 2 x=2 then we have:

( 60 + 4 ) ˙ 2 192 = 64 ˙ 2 192 = 2 6 ˙ 2 192 = 2 198 = 2 n n = 198 (60+4)\dot{}2^{192} = 64\dot{} 2^{192} = 2^6 \dot{} 2^ {192} = 2^ {198} = 2^n \quad \Rightarrow n = \boxed {198}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...