Let n 2 − 3 n − 1 2 6 be a perfect square for certain { n ∣ n ∈ Z } . What is the sum of all distinct, possible values of n ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Your method is beautiful. You have used a nice method to avoid fractions. I give below your solution with some modifications, retaining all your variables and explanations.
T h e e q u a t i o n i s ( n − 2 3 ) 2 − 4 5 1 3 = k 2 , { k ∣ k ∈ Z } . T o a v o i d f r a c t i o n s m u l t i p l y b y 4 . ∴ ( 2 n − 3 ) 2 − 4 k 2 = 5 1 3 L e t a = 2 n − 3 + 2 k a n d b = 2 n − 3 − 2 k . T h e n a b = 5 1 3 . N o t e t h a t s i n c e n a n d k a r e i n t e g e r s , a a n d b m u s t b e i n t e g e r s a s w e l l . 5 1 3 = 3 3 ∗ 1 9 . ⟹ ( 3 + 1 ) ( 1 + 1 ) = 8 f a c t o r s . I n p a i r s 4 p a i r s o f + t i v e a n d − t i v e n . A d d i n g a a n d b t o g e t h e r , f o r + t i v e , a n d − t i v e f a c t o r s w e h a v e , 4 n + − 6 = a + b g i v e s n + = 4 a + b + 6 . 4 n − − 6 = − a − b g i v e s n − = 4 a + b − 6 = − n + + 3 . S o t h e p a i r , n + + n − = 3 . S i n c e t h e r e a r e f o u r p a i r s , s u m o f a l l n = 4 ∗ ( + 3 ) = 1 2 .
N o t e : − T h e ( U n o r d e r e d ) P a i r s f a c t o r s { X , Y } a r e : − A = { 1 , 5 1 3 } , B = { 3 , 1 7 1 } , C = { 9 , 5 7 } , D = { 1 9 , 2 7 } , − A , − B , − C , − D . ⟹ A + ( − A ) + B + ( − B ) + C + ( − C ) + D + ( − D ) . F o r ± A n + = 4 1 + 5 1 3 + 6 = 1 3 0 , n − = − 1 2 7 . F o r ± B n + = 4 3 + 1 7 1 + 6 = 4 5 , n − = − 4 7 . F o r ± C n + = 4 9 + 5 7 + 6 = 1 8 , n − = − 1 5 . F o r ± D n + = 4 1 9 + 2 7 + 6 = 1 3 , n − = − 1 0 . S u m a l l n = 1 3 0 − 1 2 7 + 4 5 − 4 2 + 1 8 − 1 5 + 1 3 − 1 0 = 1 2 .
Problem Loading...
Note Loading...
Set Loading...
Let n 2 − 3 n − 1 2 6 = k 2 for some integer k . Multiplying both sides by 4 , we have
4 n 2 − 1 2 n − 5 0 4 = 4 k 2
Completing the square, we have
4 n 2 − 1 2 n + 9 − 5 1 3 = 4 k 2
( 2 n ) 2 − 2 ( 2 n ) ( 3 ) + 3 2 − 5 1 3 = 4 k 2
( 2 n − 3 ) 2 − 5 1 3 = 4 k 2
( 2 n − 3 ) 2 − ( 2 k ) 2 = 5 1 2
Using difference of squares,
( 2 n − 3 + 2 k ) ( 2 n − 3 − 2 k ) = 5 1 3
Let a = 2 n − 3 + 2 k and b = 2 n − 3 − 2 k . Then a b = 5 1 3 . Note that since n and k are integers, a and b must be integers as well. (Unordered) Pairs of integers that multiply to 5 1 3 are { 1 , 5 1 3 } , { 3 , 1 7 1 } , { 9 , 5 7 } , { 1 9 , 2 7 } and their opposites.
Adding a and b together, we have
4 n − 6 = a + b
n = 4 a + b + 6
Now we just have to evaluate n for each pair of factors (and their opposites).
For { 1 , 5 1 3 } , n = 4 1 + 5 1 3 + 6 = 1 3 0
For { 3 , 1 7 1 } , n = 4 3 + 1 7 1 + 6 = 4 5
For { 9 , 5 7 } , n = 4 9 + 5 7 + 6 = 1 8
For { 1 9 , 2 7 } , n = 4 1 9 + 2 7 + 6 = 1 3
For { − 1 , − 5 1 3 } , n = 4 − 1 − 5 1 3 + 6 = − 1 2 7
For { − 3 , − 1 7 1 } , n = 4 − 3 − 1 7 1 + 6 = − 4 2
For { − 9 , − 5 7 } , n = 4 − 9 − 5 7 + 6 = − 1 5
For { − 1 9 , − 2 7 } , n = 4 − 1 9 − 2 7 + 6 = − 1 0
Thus, our answer is 1 3 0 + 4 5 + 1 8 + 1 3 − 1 2 7 − 4 2 − 1 5 − 1 0 = 1 2