Perfect square quadratic

Let n 2 3 n 126 n^2-3n-126 be a perfect square for certain { n n Z } \{n\text{ }|\text{ } n\in\mathbb{Z}\} . What is the sum of all distinct, possible values of n n ?


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aaron Tsai
Jun 5, 2016

Let n 2 3 n 126 = k 2 n^2-3n-126=k^2 for some integer k k . Multiplying both sides by 4 4 , we have

4 n 2 12 n 504 = 4 k 2 4n^2-12n-504=4k^2

Completing the square, we have

4 n 2 12 n + 9 513 = 4 k 2 4n^2-12n+9-513=4k^2

( 2 n ) 2 2 ( 2 n ) ( 3 ) + 3 2 513 = 4 k 2 (2n)^2-2(2n)(3)+3^2-513=4k^2

( 2 n 3 ) 2 513 = 4 k 2 (2n-3)^2-513=4k^2

( 2 n 3 ) 2 ( 2 k ) 2 = 512 (2n-3)^2-(2k)^2=512

Using difference of squares,

( 2 n 3 + 2 k ) ( 2 n 3 2 k ) = 513 (2n-3+2k)(2n-3-2k)=513

Let a = 2 n 3 + 2 k a=2n-3+2k and b = 2 n 3 2 k b=2n-3-2k . Then a b = 513 ab=513 . Note that since n n and k k are integers, a a and b b must be integers as well. (Unordered) Pairs of integers that multiply to 513 513 are { 1 , 513 } , { 3 , 171 } , { 9 , 57 } , { 19 , 27 } \{1,513\}, \{3, 171\}, \{9,57\}, \{19,27\} and their opposites.

Adding a a and b b together, we have

4 n 6 = a + b 4n-6=a+b

n = a + b + 6 4 n=\dfrac{a+b+6}{4}

Now we just have to evaluate n n for each pair of factors (and their opposites).

For { 1 , 513 } \{1,513\} , n = 1 + 513 + 6 4 = 130 n = \dfrac{1 + 513 + 6}{4} = 130

For { 3 , 171 } \{3,171\} , n = 3 + 171 + 6 4 = 45 n = \dfrac{3 + 171 + 6}{4} = 45

For { 9 , 57 } \{9,57\} , n = 9 + 57 + 6 4 = 18 n = \dfrac{9 + 57 + 6}{4} = 18

For { 19 , 27 } \{19,27\} , n = 19 + 27 + 6 4 = 13 n = \dfrac{19 + 27 + 6}{4} = 13

For { 1 , 513 } \{-1,-513\} , n = 1 513 + 6 4 = 127 n = \dfrac{-1 - 513 + 6}{4} = -127

For { 3 , 171 } \{-3, -171\} , n = 3 171 + 6 4 = 42 n = \dfrac{-3 - 171 + 6}{4} = -42

For { 9 , 57 } \{-9, -57\} , n = 9 57 + 6 4 = 15 n = \dfrac{-9 - 57 + 6}{4} = -15

For { 19 , 27 } \{-19, -27\} , n = 19 27 + 6 4 = 10 n = \dfrac{-19 - 27 + 6}{4} = -10

Thus, our answer is 130 + 45 + 18 + 13 127 42 15 10 = 12 130 + 45 + 18 + 13 - 127 - 42 - 15 - 10 = \boxed{12}

Your method is beautiful. You have used a nice method to avoid fractions. I give below your solution with some modifications, retaining all your variables and explanations.

T h e e q u a t i o n i s ( n 3 2 ) 2 513 4 = k 2 , { k k Z } . T o a v o i d f r a c t i o n s m u l t i p l y b y 4. ( 2 n 3 ) 2 4 k 2 = 513 L e t a = 2 n 3 + 2 k a n d b = 2 n 3 2 k . T h e n a b = 513. N o t e t h a t s i n c e n a n d k a r e i n t e g e r s , a a n d b m u s t b e i n t e g e r s a s w e l l . 513 = 3 3 19. ( 3 + 1 ) ( 1 + 1 ) = 8 f a c t o r s . I n p a i r s 4 p a i r s o f + t i v e a n d t i v e n . A d d i n g a a n d b t o g e t h e r , f o r + t i v e , a n d t i v e f a c t o r s w e h a v e , 4 n + 6 = a + b g i v e s n + = a + b + 6 4 . 4 n 6 = a b g i v e s n = a + b 6 4 = n + + 3. S o t h e p a i r , n + + n = 3. S i n c e t h e r e a r e f o u r p a i r s , s u m o f a l l n = 4 ( + 3 ) = 12. The~ equation~ is ~\Big(n-\dfrac 3 2\Big)^2-\dfrac{513} 4=k^2,~\{k\text{ }|\text{ } k\in\mathbb{Z}\}.\\ ~~~\\ To ~avoid~fractions~multiply~by~ 4.~\therefore~(2n-3)^2-4k^2=513\\ ~~~\\ Let~a=2n-3+2k~ and~ b=2n-3-2k.~ Then~ab=513.~\\ ~~~\\ \color{#3D99F6}{ Note~ that~ since~ n ~and~k~ are~ integers,~a~ and~b~ must~ be~ integers~ as~ well.}\\ ~~~\\ 513=3^3*19. ~\implies~(3+1)(1+1)=8~factors.~~In~ pairs ~4~pairs~of~+tive~and~-tive~n.\\ ~~~\\ Adding~ a~ and~b~ together,~for~+tive,~and~-tive~factors~ we~ have,\\ ~~~\\ 4n_{+}-6=a+b~gives~n_{+}=\dfrac{a+b+6}4.\\ ~~~\\ 4n_{-}-6=-a-b~gives~n_{-}=\dfrac{a+b-6}4=-n_{+}+3.\\ ~~~\\ So~~the~pair, ~n_{+}~+~n_{-}=\color{#3D99F6}{3}.\\ ~~~\\ Since~there~are~four~pairs,~sum~of~ all~ n= 4*(+3)=\Large~~\color{#D61F06}{12}.\\

N o t e : T h e ( U n o r d e r e d ) P a i r s f a c t o r s { X , Y } a r e : A = { 1 , 513 } , B = { 3 , 171 } , C = { 9 , 57 } , D = { 19 , 27 } , A , B , C , D . A + ( A ) + B + ( B ) + C + ( C ) + D + ( D ) . F o r ± A n + = 1 + 513 + 6 4 = 130 , n = 127. F o r ± B n + = 3 + 171 + 6 4 = 45 , n = 47. F o r ± C n + = 9 + 57 + 6 4 = 18 , n = 15. F o r ± D n + = 19 + 27 + 6 4 = 13 , n = 10. S u m a l l n = 130 127 + 45 42 + 18 15 + 13 10 = 12. Note:-\\ The~(Unordered)~ Pairs~ factors~\{X,~Y\}~~are:-~~A=\{1,~513\}~,~B=\{3,~171\}~,~C=\{9,~57\}~,~D=\{19,~27\},~-A,~-B,~-C,~-D.\\ \implies~~A+(-A)~~~+~~~B+(-B)~~~+~~~ C+(-C)~~~+~~~D+(-D).\\ For~\pm A~~n_{+}=\dfrac{1+513+6} 4=130,~~~ n_{-}=-127.\\ For~\pm B~~n_{+}=\dfrac{3+171+6} 4=~45,~~~ n_{-}=-~47.\\ For~\pm C~~n_{+}=\dfrac{9+57+6} 4=~18,~~~ n_{-}=-~15.\\ For~\pm D~~n_{+}=\dfrac{19+27+6} 4=13,~~~ n_{-}=-~10.\\ Sum~all~n~=130-127~~~+~~~45-42~~~+~~~18-15~~~+~~~13-10=12.

Niranjan Khanderia - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...