Perfect squares

In the diagram below, 8 positive integers are placed around a circle in such a way that the sum of any two neighboring numbers is a perfect square. What is the 3-digit number X ? X?


The answer is 223.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zach Abueg
Jul 26, 2017

We have

1458 + x = y 2 3258 + x = z 2 \displaystyle \begin{aligned} 1458 + x = y^2 \\ 3258 + x = z^2 \end{aligned}

for positive integers x , y , z x, y, z .

Subtracting the first equation from the second gives us ( z + y ) ( z y ) = 1800 (z + y)(z - y) = 1800 . Letting a = z + y a = z + y and b = z y b = z - y , we want to find a , b a, b such that a b = 1800 ab = 1800 .

a a and b b must both be even, so we consider the even factors of 1800:

( 2 , 900 ) , ( 4 , 450 ) , ( 6 , 300 ) , ( 10 , 180 ) , ( 12 , 150 ) , ( 18 , 100 ) , ( 20 , 90 ) , ( 30 , 60 ) , ( 36 , 50 ) (2, 900), (4, 450), (6, 300), (10, 180), (12, 150), (18, 100), (20, 90), (30, 60), (36, 50)

giving us the following pairs of linear equations:

z + y = 2 z y = 900 ( 1 ) z + y = 900 z y = 2 ( 2 ) z + y = 4 z y = 450 ( 3 ) z + y = 450 z y = 4 ( 4 ) z + y = 6 z y = 300 ( 5 ) z + y = 300 z y = 6 ( 6 ) z + y = 10 z y = 180 ( 7 ) z + y = 180 z y = 10 ( 8 ) z + y = 12 z y = 150 ( 9 ) z + y = 150 z y = 12 ( 10 ) z + y = 18 z y = 100 ( 11 ) z + y = 100 z y = 18 ( 12 ) z + y = 20 z y = 90 ( 13 ) z + y = 90 z y = 20 ( 14 ) z + y = 30 z y = 60 ( 15 ) z + y = 60 z y = 30 ( 16 ) z + y = 36 z y = 50 ( 17 ) z + y = 50 z y = 36 ( 18 ) \begin{aligned} z + y & = 2 & z - y & = 900 & \qquad (1) \\ z + y & = 900 & z - y & = 2 & \qquad (2) \\ z + y & = 4 & z - y & = 450 & \qquad (3) \\ z + y & = 450 & z - y & = 4 & \qquad (4) \\ z + y & = 6 & z - y & = 300 & \qquad (5) \\ z + y & = 300 & z - y & = 6 & \qquad (6) \\ z + y & = 10 & z - y & = 180 & \qquad (7) \\ z + y & = 180 & z - y & = 10 & \qquad (8) \\ z + y & = 12 & z - y & = 150 & \qquad (9) \\ z + y & = 150 & z - y & = 12 & \qquad (10) \\ z + y & = 18 & z - y & = 100 & \qquad (11) \\ z + y & = 100 & z - y & = 18 & \qquad (12) \\ z + y & = 20 & z - y & = 90 & \qquad (13) \\ z + y & = 90 & z - y & = 20 & \qquad (14) \\ z + y & = 30 & z - y & = 60 & \qquad (15) \\ z + y & = 60 & z - y & = 30 & \qquad (16) \\ z + y & = 36 & z - y & = 50 & \qquad (17) \\ z + y & = 50 & z - y & = 36 & \qquad (18) \end{aligned}

The respective solutions to these systems of linear equations are

y = 449 z = 451 ( 1 ) y = 449 z = 451 ( 2 ) y = 223 z = 227 ( 3 ) y = 223 z = 227 ( 4 ) y = 147 z = 153 ( 5 ) y = 147 z = 153 ( 6 ) y = 85 z = 95 ( 7 ) y = 85 z = 95 ( 8 ) y = 69 z = 81 ( 9 ) y = 69 z = 81 ( 10 ) y = 41 z = 59 ( 11 ) y = 41 z = 59 ( 12 ) y = 35 z = 55 ( 13 ) y = 35 z = 55 ( 14 ) y = 15 z = 45 ( 15 ) y = 15 z = 45 ( 16 ) y = 7 z = 43 ( 17 ) y = 7 z = 43 ( 18 ) \begin{aligned} y & = -449 & z & = 451 & \qquad (1)' \\ y & = 449 & z & = 451 & \qquad (2)' \\ y & = -223 & z & = 227 & \qquad (3)' \\ y & = 223 & z & = 227 & \qquad (4)' \\ y & = -147 & z & = 153 & \qquad (5)' \\ y & = 147 & z & = 153 & \qquad (6)' \\ y & = -85 & z & = 95 & \qquad (7)' \\ y & = 85 & z & = 95 & \qquad (8)' \\ y & = -69 & z & = 81 & \qquad (9)' \\ y & = 69 & z & = 81 & \qquad (10)' \\ y & = -41 & z & = 59 & \qquad (11)' \\ y & = 41 & z & = 59 & \qquad (12)' \\ y & = -35 & z & = 55 & \qquad (13)' \\ y & = 35 & z & = 55 & \qquad (14)' \\ y & = - 15 & z & = 45 & \qquad (15)' \\ y & = 15 & z & = 45 & \qquad (16)' \\ y & = - 7 & z & = 43 & \qquad (17)' \\ y & = 7 & z & = 43 & \qquad (18)' \end{aligned}

Because y > 0 y > 0 , we can eliminate half of these. Now, recall that x = y 2 1458 > 0 y > 39 x = y^2 - 1458 > 0 \Longrightarrow y > 39 .

Using x = y 2 1458 = z 2 3258 x = y^2 - 1458 = z^2 - 3258 , we solve the remaining solutions ( y > 39 , z ) \left(y > 39, z\right) for x x :

x = 200143 ( 2 ) x = 48271 ( 4 ) x = 20151 ( 6 ) x = 5767 ( 8 ) x = 3303 ( 10 ) x = 223 ( 12 ) \begin{aligned} x & = 200143 & \qquad (2)' \\ x & = 48271 & \qquad (4)' \\ x & = 20151 & \qquad (6)' \\ x & = 5767 & \qquad (8)' \\ x & = 3303 & \qquad (10)' \\ x & = 223 & \qquad (12)' \end{aligned}

Of those, only 223 223 is a 3-digit integer. Our answer is x = 223 x = \boxed{223} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...