In the diagram below, 8 positive integers are placed around a circle in such a way that the sum of any two neighboring numbers is a perfect square. What is the 3-digit number
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We have
1 4 5 8 + x = y 2 3 2 5 8 + x = z 2
for positive integers x , y , z .
Subtracting the first equation from the second gives us ( z + y ) ( z − y ) = 1 8 0 0 . Letting a = z + y and b = z − y , we want to find a , b such that a b = 1 8 0 0 .
a and b must both be even, so we consider the even factors of 1800:
( 2 , 9 0 0 ) , ( 4 , 4 5 0 ) , ( 6 , 3 0 0 ) , ( 1 0 , 1 8 0 ) , ( 1 2 , 1 5 0 ) , ( 1 8 , 1 0 0 ) , ( 2 0 , 9 0 ) , ( 3 0 , 6 0 ) , ( 3 6 , 5 0 )
giving us the following pairs of linear equations:
z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y z + y = 2 = 9 0 0 = 4 = 4 5 0 = 6 = 3 0 0 = 1 0 = 1 8 0 = 1 2 = 1 5 0 = 1 8 = 1 0 0 = 2 0 = 9 0 = 3 0 = 6 0 = 3 6 = 5 0 z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y z − y = 9 0 0 = 2 = 4 5 0 = 4 = 3 0 0 = 6 = 1 8 0 = 1 0 = 1 5 0 = 1 2 = 1 0 0 = 1 8 = 9 0 = 2 0 = 6 0 = 3 0 = 5 0 = 3 6 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 1 0 ) ( 1 1 ) ( 1 2 ) ( 1 3 ) ( 1 4 ) ( 1 5 ) ( 1 6 ) ( 1 7 ) ( 1 8 )
The respective solutions to these systems of linear equations are
y y y y y y y y y y y y y y y y y y = − 4 4 9 = 4 4 9 = − 2 2 3 = 2 2 3 = − 1 4 7 = 1 4 7 = − 8 5 = 8 5 = − 6 9 = 6 9 = − 4 1 = 4 1 = − 3 5 = 3 5 = − 1 5 = 1 5 = − 7 = 7 z z z z z z z z z z z z z z z z z z = 4 5 1 = 4 5 1 = 2 2 7 = 2 2 7 = 1 5 3 = 1 5 3 = 9 5 = 9 5 = 8 1 = 8 1 = 5 9 = 5 9 = 5 5 = 5 5 = 4 5 = 4 5 = 4 3 = 4 3 ( 1 ) ′ ( 2 ) ′ ( 3 ) ′ ( 4 ) ′ ( 5 ) ′ ( 6 ) ′ ( 7 ) ′ ( 8 ) ′ ( 9 ) ′ ( 1 0 ) ′ ( 1 1 ) ′ ( 1 2 ) ′ ( 1 3 ) ′ ( 1 4 ) ′ ( 1 5 ) ′ ( 1 6 ) ′ ( 1 7 ) ′ ( 1 8 ) ′
Because y > 0 , we can eliminate half of these. Now, recall that x = y 2 − 1 4 5 8 > 0 ⟹ y > 3 9 .
Using x = y 2 − 1 4 5 8 = z 2 − 3 2 5 8 , we solve the remaining solutions ( y > 3 9 , z ) for x :
x x x x x x = 2 0 0 1 4 3 = 4 8 2 7 1 = 2 0 1 5 1 = 5 7 6 7 = 3 3 0 3 = 2 2 3 ( 2 ) ′ ( 4 ) ′ ( 6 ) ′ ( 8 ) ′ ( 1 0 ) ′ ( 1 2 ) ′
Of those, only 2 2 3 is a 3-digit integer. Our answer is x = 2 2 3 .