Perhaps you call it Newton's sum

Algebra Level 2

If V n = α n + β n V_n=\alpha^n+\beta^n , where α \alpha and β \beta are the roots of the equation

x 2 + x 1 = 0 , x^2+x-1=0,

what is V 7 ? V_7?


The answer is -29.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Since α \alpha and β \beta are roots of x 2 + x 1 = 0 x^2+x-1=0 . we have:

{ α 2 + α 1 = 0 β 2 + β 1 = 0 { α 2 + α 1 α 0 = 0 β 2 + β 1 β 0 = 0 \begin{cases} \alpha^2+\alpha-1=0 \\ \beta^2+\beta-1=0 \end{cases} \Rightarrow \begin{cases} \alpha^2+\alpha^1-\alpha^0=0 \\ \beta^2+\beta^1-\beta^0=0 \end{cases}

( α 2 + β 2 ) + ( α 1 + β 1 ) ( α 0 + β 0 ) = 0 V 2 = V 1 + V 0 \Rightarrow (\alpha^2+\beta^2) + (\alpha^1 + \beta^1 ) - ( \alpha ^0 + \beta^0) = 0 \quad \Rightarrow V_2=-V_1+V_0

Similarly,

{ α 3 + α 2 α 1 = 0 β 3 + β 2 β 1 = 0 V 3 = V 2 + V 1 \begin{cases} \alpha^3+\alpha^2-\alpha^1=0 \\ \beta^3+\beta^2-\beta^1=0 \end{cases} \Rightarrow V_3=-V_2+V_1

{ α 4 + α 3 α 2 = 0 β 4 + β 3 β 2 = 0 V 4 = V 3 + V 2 V n = V n 1 + V n 2 \begin{cases} \alpha^4+\alpha^3-\alpha^2=0 \\ \beta^4+\beta^3-\beta^2=0 \end{cases} \Rightarrow V_4=-V_3+V_2 \quad \Rightarrow V_n = - V_{n-1} + V_{n-2}

V 0 = α 0 + β 0 = 2 V_0 = \alpha^0 + \beta^0 = 2

V 1 = α + β = 1 V_1 = \alpha+ \beta = -1

V 2 = V 1 + V 0 = 1 + 2 = 3 V_2 = - V_1 + V_0 = 1 + 2 = 3

V 3 = V 2 + V 1 = 3 1 = 4 V_3 = - V_2 + V_1 = -3 -1 = -4

V 4 = V 3 + V 2 = 4 + 3 = 7 V_4 = - V_3 + V_2 = 4 + 3 = 7

V 5 = V 4 + V 3 = 7 4 = 11 V_5 = - V_4 + V_3 = - 7 - 4 = -11

V 6 = V 5 + V 4 = 11 + 7 = 18 V_6 = - V_5 + V_4 = 11 + 7 = 18

V 7 = V 6 + V 5 = 18 11 = 29 V_7 = - V_6 + V_5 = -18 -11 = \boxed{-29}

Yeah did it the same way sir..

Rishabh Tiwari - 5 years, 1 month ago

Recursion!!!!!!!!!!

Debarghya Adhikari - 1 year ago
Sandeep Bhardwaj
Nov 6, 2014

V n + V n 3 = [ α n + β n ] + [ α n 3 + β n 3 ] V_n+V_{n-3}=[\alpha^n+\beta^n]+[ \alpha^{n-3} +\beta^{n-3} ]

= α n 3 ( α 3 + 1 ) + β n 3 ( β 3 + 1 ) \quad \quad \quad \quad =\alpha^{n-3}(\alpha^3+1) + \beta^{n-3}(\beta^3+1)

And

{ α 3 + 1 = ( α 2 + α 1 ) ( α 1 ) + 2. α = 2. α β 3 + 1 = ( β 2 + β 1 ) ( β 1 ) + 2. β = 2. β \begin{cases} \alpha^3+1=(\alpha^2+\alpha -1)(\alpha-1)+2.\alpha = 2. \alpha \\ \beta^3+1=(\beta^2+\beta-1)(\beta-1)+2.\beta=2.\beta \end{cases}

Therefore

V n + V n 3 = α n 3 ( 2. α ) + β n 3 ( 2. β ) V_n+V_{n-3}=\alpha^{n-3}(2.\alpha) + \beta^{n-3}(2.\beta)

V n + V n 3 = 2. V n 2 \implies \large \boxed{V_n+ V_{n-3}=2.V_{n-2}}

V 7 = 2. V 5 V 4 = 2. ( 2. V 3 V 2 ) ( 2 V 2 V 1 ) = 4. V 3 4. V 2 + V 1 \implies V_7=2.V_5-V_4=2.(2.V_3-V_2)-(2V_2-V_1)=4.V_3-4.V_2+V_1

V 7 = 4. ( 2 V 1 V 0 ) 4. V 2 + V 1 = 9. V 1 4. V 0 4. V 2 \implies V_7=4.(2V_1-V_0)-4.V_2+V_1=9.V_1-4.V_0-4.V_2

{ V 0 = α 0 + β 0 = 2. V 1 = α + β = 1 V 2 = α 2 + β 2 = 3 \begin{cases} V_0=\alpha^0+\beta^0=2. \\ V_1=\alpha+\beta=-1 \\ V_2=\alpha^2+\beta^2=3 \end{cases}

So

V 7 = 29 V_7=\boxed{-29}

You can find a much simpler recurrence, which is, V k = V k 2 V k 1 , k 2 V_k=V_{k-2}-V_{k-1},~k\geq 2

This can easily be obtained by evaluating elementary symmetric polynomials e 1 , e 2 e_1,e_2 using Vieta's formulas and then using the fact that the elementary symmetric polynomial e k = 0 e_k=0 for k > 2 k\gt 2 here according to Newton's sums , then substituting the values of e 1 , e 2 e_1,e_2 in the general form of Newton's sums and neglecting the other higher terms since they are equal to 0 0 . Having V 0 , V 1 V_0, V_1 , we can manually calculate V 7 V_7

Prasun Biswas - 6 years, 5 months ago

Good solution,Sir

Ayush Verma - 6 years, 7 months ago

Log in to reply

What are newton sums?

U Z - 6 years, 7 months ago

Log in to reply

S n = α n + β n S_n=\alpha^n+\beta^n is called Newton's sum. @megh choksi

Sandeep Bhardwaj - 6 years, 7 months ago

very nice solution!!

will jain - 6 years, 7 months ago

And all the time I spent evaluating α 2 + β 2 \alpha^2 +\beta^2 , α 4 + β 4 \alpha^4 +\beta^4 and α 6 + β 6 \alpha^6 + \beta^6 .......................... :(

a m a z i n g amazing s o l u t i o n ! solution !

Maninder Dhanauta - 5 years, 2 months ago

how did u get that v1=-1 and v2=3 ?

Housam Kak - 5 years, 1 month ago

Log in to reply

Vieta's formulas

Ayush Verma - 5 years, 1 month ago
Adarsh Kumar
Nov 7, 2014

F r o m t h e q u e s t i o n w e h a v e : α + β = ( 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 ) α β = ( 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) . S q u a r i n g t h e f i r s t e q u a t i o n g i v e s : α 2 + β 2 + 2 α β = 1. S u b s t i t u t i n g t h e v a l u e o f α β g i v e s : α 2 + β 2 = 3. A g a i n s q u a r i n g t h e a b o v e e q u a t i o n a n d s u b s t i t u t i n g t h e v a l u e o f α β g i v e s t h a t : α 4 + β 4 = 7 ( 3 ) . N o w , l e t u s f i n d o u t t h e v a l u e o f α 3 + β 3 . W e c u b e t h e f i r s t e q u a t i o n t o g e t : α 3 + β 3 + 3 α β ( α + β ) = ( 1 ) ( 4 ) . S u b s t i t u t i n g t h e v a l u e s o f α + β a n d α β g i v e s : α 3 + β 3 = ( 4 ) . M u l t i p l y i n g e q u a t i o n s ( 3 ) a n d ( 4 ) w e g e t : α 7 + β 7 + α 3 β 3 ( α + β ) = ( 28 ) . S u b s t i t u t e t h e v a l u e s o f α + β a n d α β a n d g e t t h e a n s w e r . From\ the\ question\ we\ have:\\ \alpha+\beta=(-1).......................................(1)\\ \alpha*\beta=(-1)........................................(2)\\ .Squaring\ the\ first\ equation\ gives:\\ \alpha^{2}+\beta^{2}+2*\alpha*\beta=1.\\Substituting\ the\ value\ of \alpha*\beta gives:\\ \alpha^{2}+\beta^{2}=3. Again\ squaring\ the\ above\ equation\ and\ substituting\ the\ value\\\ of\ \alpha*\beta\ gives\ that:\alpha^{4}+\beta^{4}=7(3).Now,let\ us\ find\ out\ the\\\ value\ of\ \alpha^{3}+\beta^{3}.\\ We\ cube\ the\ first\ equation\ to\ get:\\ \alpha^{3}+\beta^{3}+3*\alpha*\beta(\alpha+\beta)=(-1)(4).\\ Substituting\ the\ values\ of\ \alpha+\beta\ and\ \alpha*\beta\ gives:\\ \alpha^{3}+\beta^{3}=(-4).Multiplying\ equations\ (3)\ and\ (4)\ we\ get:\\ \alpha^{7}+\beta^{7}+\alpha^{3}*\beta^{3}(\alpha+\beta)=(-28).Substitute\ the\\\ values\ of\ \alpha+\beta\ and\ \alpha*\beta\ and\ get\ the\ answer.

James Pohadi
Apr 26, 2017

x 7 = ( x 2 + x 1 ) ( x 5 x 4 + 2 x 3 3 x 2 + 5 x 8 ) + 13 x 8 x^{7}=(x^{2}+x-1)(x^{5}-x^{4}+2x^{3}-3x^{2}+5x-8)+13x-8

For x = α x=\alpha and x = β x=\beta ,

x 7 = 13 x 8 x^{7}=13x-8 since x 2 + x 1 = 0 x^{2}+x-1=0

α 7 + β 7 = ( 13 α 8 ) + ( 13 β 8 ) = 13 ( α + β ) 16 = 13 ( 1 ) 16 by Vieta = 29 \begin{aligned} &\alpha^{7}+\beta^{7} \\ &=(13 \alpha -8)+(13 \beta-8) \\ &=13 (\alpha + \beta) -16 \\ &=13 (-1)-16 & \small \color{#3D99F6}{ \text{ by Vieta} } \\ &= \boxed {-29} \end{aligned}

Rohit Ner
Apr 25, 2016

x 2 = 1 x x 3 = x x 2 = 2 x 1 x 6 = 4 x 2 4 x + 1 = 5 8 x x 7 = 5 x 8 x 2 = 13 x 8 V 7 = 13 ( α + β ) 16 = 29 \begin{aligned}{x}^2&=1-x\\{x}^3&=x-{x}^2\\&=2x-1\\{x}^6&=4{x}^2-4x+1\\&=5-8x\\{x}^7&=5x-8{x}^2\\&=13x-8\\V_7&=13(\alpha+\beta)-16\\&\huge\color{#3D99F6}{=\boxed{-29}}\end{aligned}

Sumant Chopde
Nov 3, 2019

O n s o l v i n g t h e e q u a t i o n , w e g e t α = 1 + 5 2 a n d β = 1 5 2 On \; solving\; the\; equation, \; we \; get \newline \alpha = \frac{-1+\sqrt{5}}{2} and \; \beta = \frac{-1-\sqrt{5}}{2} \newline \: \newline W e h a v e x 2 = 1 x We\;have \; x^{2} = 1-x \newline \therefore x 4 = 1 2 x x 2 x^{4}=1-2x-x^{2} \newline = 1 2 x + 1 x =1-2x+1-x \newline = 2 3 x =2-3x \newline S i m i l a r l y , x 8 = 4 12 x + 9 x 2 Similarly, \; x^{8}=4-12x+9x^{2} \newline = 4 12 x + 9 ( 1 x ) =4-12x+9(1-x) \newline = 13 21 x =13-21x \newline x 7 = 13 x 21 \therefore x^{7} = \frac{13}{x}-21 \newline \: \newline S i n c e x 2 = 1 x , x = 1 x 1 Since \; x^{2} = 1-x,\; x=\frac{1}{x} -1 \newline H e n c e , 1 x = x + 1 Hence, \; \frac{1}{x} = x +1 \newline \: \newline x 7 = 13 ( x + 1 ) 21 = 13 x 8 \therefore x^{7} = 13(x+1) -21 = 13x-8 \newline \; \newline V 7 = α 7 + β 7 = 13 α 8 + 13 β 8 = 13 ( α + β ) 16 \therefore V_7 = \alpha^{7} + \beta^{7} \newline =13\alpha - 8 +13\beta -8 \newline = 13(\alpha +\beta) -16 \newline = 13 ( 1 + 5 1 5 2 ) 16 =13(\frac{-1+\sqrt{5}-1-\sqrt{5}}{2}) -16 \newline = 29 =\boxed{-29}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...