If V n = α n + β n , where α and β are the roots of the equation
x 2 + x − 1 = 0 ,
what is V 7 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Yeah did it the same way sir..
Recursion!!!!!!!!!!
V n + V n − 3 = [ α n + β n ] + [ α n − 3 + β n − 3 ]
= α n − 3 ( α 3 + 1 ) + β n − 3 ( β 3 + 1 )
And
{ α 3 + 1 = ( α 2 + α − 1 ) ( α − 1 ) + 2 . α = 2 . α β 3 + 1 = ( β 2 + β − 1 ) ( β − 1 ) + 2 . β = 2 . β
Therefore
V n + V n − 3 = α n − 3 ( 2 . α ) + β n − 3 ( 2 . β )
⟹ V n + V n − 3 = 2 . V n − 2
⟹ V 7 = 2 . V 5 − V 4 = 2 . ( 2 . V 3 − V 2 ) − ( 2 V 2 − V 1 ) = 4 . V 3 − 4 . V 2 + V 1
⟹ V 7 = 4 . ( 2 V 1 − V 0 ) − 4 . V 2 + V 1 = 9 . V 1 − 4 . V 0 − 4 . V 2
⎩ ⎪ ⎨ ⎪ ⎧ V 0 = α 0 + β 0 = 2 . V 1 = α + β = − 1 V 2 = α 2 + β 2 = 3
So
V 7 = − 2 9
You can find a much simpler recurrence, which is, V k = V k − 2 − V k − 1 , k ≥ 2
This can easily be obtained by evaluating elementary symmetric polynomials e 1 , e 2 using Vieta's formulas and then using the fact that the elementary symmetric polynomial e k = 0 for k > 2 here according to Newton's sums , then substituting the values of e 1 , e 2 in the general form of Newton's sums and neglecting the other higher terms since they are equal to 0 . Having V 0 , V 1 , we can manually calculate V 7
Good solution,Sir
Log in to reply
What are newton sums?
Log in to reply
S n = α n + β n is called Newton's sum. @megh choksi
very nice solution!!
And all the time I spent evaluating α 2 + β 2 , α 4 + β 4 and α 6 + β 6 .......................... :(
a m a z i n g s o l u t i o n !
how did u get that v1=-1 and v2=3 ?
F r o m t h e q u e s t i o n w e h a v e : α + β = ( − 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 1 ) α ∗ β = ( − 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) . S q u a r i n g t h e f i r s t e q u a t i o n g i v e s : α 2 + β 2 + 2 ∗ α ∗ β = 1 . S u b s t i t u t i n g t h e v a l u e o f α ∗ β g i v e s : α 2 + β 2 = 3 . A g a i n s q u a r i n g t h e a b o v e e q u a t i o n a n d s u b s t i t u t i n g t h e v a l u e o f α ∗ β g i v e s t h a t : α 4 + β 4 = 7 ( 3 ) . N o w , l e t u s f i n d o u t t h e v a l u e o f α 3 + β 3 . W e c u b e t h e f i r s t e q u a t i o n t o g e t : α 3 + β 3 + 3 ∗ α ∗ β ( α + β ) = ( − 1 ) ( 4 ) . S u b s t i t u t i n g t h e v a l u e s o f α + β a n d α ∗ β g i v e s : α 3 + β 3 = ( − 4 ) . M u l t i p l y i n g e q u a t i o n s ( 3 ) a n d ( 4 ) w e g e t : α 7 + β 7 + α 3 ∗ β 3 ( α + β ) = ( − 2 8 ) . S u b s t i t u t e t h e v a l u e s o f α + β a n d α ∗ β a n d g e t t h e a n s w e r .
x 7 = ( x 2 + x − 1 ) ( x 5 − x 4 + 2 x 3 − 3 x 2 + 5 x − 8 ) + 1 3 x − 8
For x = α and x = β ,
x 7 = 1 3 x − 8 since x 2 + x − 1 = 0
α 7 + β 7 = ( 1 3 α − 8 ) + ( 1 3 β − 8 ) = 1 3 ( α + β ) − 1 6 = 1 3 ( − 1 ) − 1 6 = − 2 9 by Vieta
x 2 x 3 x 6 x 7 V 7 = 1 − x = x − x 2 = 2 x − 1 = 4 x 2 − 4 x + 1 = 5 − 8 x = 5 x − 8 x 2 = 1 3 x − 8 = 1 3 ( α + β ) − 1 6 = − 2 9
O n s o l v i n g t h e e q u a t i o n , w e g e t α = 2 − 1 + 5 a n d β = 2 − 1 − 5 W e h a v e x 2 = 1 − x ∴ x 4 = 1 − 2 x − x 2 = 1 − 2 x + 1 − x = 2 − 3 x S i m i l a r l y , x 8 = 4 − 1 2 x + 9 x 2 = 4 − 1 2 x + 9 ( 1 − x ) = 1 3 − 2 1 x ∴ x 7 = x 1 3 − 2 1 S i n c e x 2 = 1 − x , x = x 1 − 1 H e n c e , x 1 = x + 1 ∴ x 7 = 1 3 ( x + 1 ) − 2 1 = 1 3 x − 8 ∴ V 7 = α 7 + β 7 = 1 3 α − 8 + 1 3 β − 8 = 1 3 ( α + β ) − 1 6 = 1 3 ( 2 − 1 + 5 − 1 − 5 ) − 1 6 = − 2 9
Problem Loading...
Note Loading...
Set Loading...
Since α and β are roots of x 2 + x − 1 = 0 . we have:
{ α 2 + α − 1 = 0 β 2 + β − 1 = 0 ⇒ { α 2 + α 1 − α 0 = 0 β 2 + β 1 − β 0 = 0
⇒ ( α 2 + β 2 ) + ( α 1 + β 1 ) − ( α 0 + β 0 ) = 0 ⇒ V 2 = − V 1 + V 0
Similarly,
{ α 3 + α 2 − α 1 = 0 β 3 + β 2 − β 1 = 0 ⇒ V 3 = − V 2 + V 1
{ α 4 + α 3 − α 2 = 0 β 4 + β 3 − β 2 = 0 ⇒ V 4 = − V 3 + V 2 ⇒ V n = − V n − 1 + V n − 2
V 0 = α 0 + β 0 = 2
V 1 = α + β = − 1
V 2 = − V 1 + V 0 = 1 + 2 = 3
V 3 = − V 2 + V 1 = − 3 − 1 = − 4
V 4 = − V 3 + V 2 = 4 + 3 = 7
V 5 = − V 4 + V 3 = − 7 − 4 = − 1 1
V 6 = − V 5 + V 4 = 1 1 + 7 = 1 8
V 7 = − V 6 + V 5 = − 1 8 − 1 1 = − 2 9