Perimeter 2008

Geometry Level 4

Find the number of all integer sided isosceles obtuse angled triangles with perimeter 2008.


The answer is 86.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ramiel To-ong
Dec 16, 2015

Let the three sides be a, a and b. Hence 2a + b = 2008 - equation 1

Using the triangular inequality we have 2a > b - equation 2

Also using the cosine rule for finding sides of a triangle we note that where is the angle between the two equal sides and obtuse (none of the equal angles can be obtuse as a triangle cannot have more than one obtuse angle). Solving the inequalities we get 502 < a < 588.25 allowing total 86 values of a. Thus there are 86 such triangles.

Copy of my solution of the same problem .... "All I'm given is the Perimeter?" by Mridul Jain. F o r a r i g h t a n g l e d t r i a n g l e , w i t h l e g s = x , w e h a v e H y p o t h e s i s , h = x 2 . S o x = 2008 2 + 2 = 588.12... a n d h = 831.55... S o u p p e r l i m i t f o r x i s 588 a n d f o r b a s e b l o w e r l i m i t i s 832 > h . I f a l l t h r e e a r e i n l i n e , w e h a v e 502 502 1004. S o b = 1003 w o u l d b e O K . B u t x i s n o t a n i n t e g e r . S o b = 1002 i s h i g h e r l i m i t a n d x = 503 l o w e r l i m i t . N u m b e r o f s o l u t i o n s m o v i n g i n s t e p s o f 2 t o k e e p x a s a n i n t e g e r i s 1002 832 2 + 1 = 86. C h e c k f o r x N u m b e r o f s o l u t i o n s m o v i n g i n s t e p s o f 1 i s ( 588 503 ) + 1 = 86 , c h e c k e d . For~ a~ right~ angled~ triangle,~ with~~ legs=x,~ we~ have ~Hypothesis,~h~=x\sqrt2.\\ So~x=\dfrac{2008}{2+\sqrt2}=588.12...and~h=831.55...\\ So ~upper~ limit~for~x ~is ~588~~and~~for~base~b~lower~limit~is~832>h.\\ If~all~three~are~in~line,~we~have~502-502-1004.\\ So~ b=1003~would~ be~ OK. But~x~is~not~an~integer.\\ So~b=1002~is~higher~limit~and~x=503~lower~limit.\\ Number~of~solutions-moving~ in~ steps~ of~2~to~keep~x~as~an~integer~is~\dfrac{1002-832} 2+1=86.\\ Check~for~x~Number~of~solutions-moving~ in ~steps~ of~1~~is~~(588 -503)+1=\Large~~\color{#D61F06}{86,~checked.}

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...