Perimeter from medians

Geometry Level pending

A B C \triangle ABC has median A D = 5 AD = 5 , median B E = 7 BE = 7 , and median C F = 6 CF = 6 . Find the perimeter of this triangle.


The answer is 20.77.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

David Vreken
Jul 1, 2020

From Apollonius' theorem:

m a = 2 b 2 + 2 c 2 a 2 4 m_a = \sqrt{\frac{2b^2 + 2c^2 - a^2}{4}}

m b = 2 a 2 + 2 c 2 b 2 4 m_b = \sqrt{\frac{2a^2 + 2c^2 - b^2}{4}}

m c = 2 a 2 + 2 b 2 c 2 4 m_c = \sqrt{\frac{2a^2 + 2b^2 - c^2}{4}}

which means:

a = 2 3 2 m b 2 + 2 m c 2 m a 2 = 2 3 2 6 2 + 2 7 2 5 2 = 2 3 145 a = \frac{2}{3}\sqrt{2m_b^2 + 2m_c^2 - m_a^2} = \frac{2}{3}\sqrt{2 \cdot 6^2 + 2 \cdot 7^2 - 5^2} = \frac{2}{3}\sqrt{145}

b = 2 3 2 m a 2 + 2 m c 2 m b 2 = 2 3 2 5 2 + 2 7 2 6 2 = 2 3 112 b = \frac{2}{3}\sqrt{2m_a^2 + 2m_c^2 - m_b^2} = \frac{2}{3}\sqrt{2 \cdot 5^2 + 2 \cdot 7^2 - 6^2} = \frac{2}{3}\sqrt{112}

c = 2 3 2 m a 2 + 2 m b 2 m c 2 = 2 3 2 5 2 + 2 6 2 7 2 = 2 3 73 c = \frac{2}{3}\sqrt{2m_a^2 + 2m_b^2 - m_c^2} = \frac{2}{3}\sqrt{2 \cdot 5^2 + 2 \cdot 6^2 - 7^2} = \frac{2}{3}\sqrt{73}

so the perimeter is a + b + c = 2 3 145 + 2 3 112 + 2 3 73 20.77 a + b + c = \frac{2}{3}\sqrt{145} + \frac{2}{3}\sqrt{112} + \frac{2}{3}\sqrt{73} \approx \boxed{20.77} .

Let the lengths of the sides of the triangle be a , b , c a, b, c . Then, using Apollonius' theorem, we get

b 2 + c 2 = 2 × 5 2 + 2 × a 2 4 b^2+c^2=2\times 5^2+2\times \frac{a^2}{4}

c 2 + a 2 = 2 × 7 2 + 2 × b 2 4 c^2+a^2=2\times 7^2+2\times \frac{b^2}{4}

a 2 + b 2 = 2 × 6 2 + 2 × c 2 4 a^2+b^2=2\times 6^2+2\times \frac{c^2}{4}

So, a 2 + b 2 + c 2 = 4 3 ( 5 2 + 7 2 + 6 2 ) = 440 3 a^2+b^2+c^2=\frac{4}{3}(5^2+7^2+6^2)=\frac{440}{3}

So, a = 2 3 145 , b = 2 3 73 , c = 2 3 112 a=\frac{2}{3}\sqrt {145},b=\frac{2}{3}\sqrt {73}, c=\frac{2}{3}\sqrt {112} .

So, the perimeter of the triangle is

2 3 ( 145 + 73 + 112 ) 20.779 \frac{2}{3}(\sqrt {145}+\sqrt {73}+\sqrt {112})\approx \boxed {20.779} .

After calculating the value of a 2 + b 2 + c 2 a^2+b^2+c^2 , how did you individually found the values of a , b , c a,b,c ?

Vilakshan Gupta - 11 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...