Perimeter problem from AMQ

Geometry Level 3

Consider a right triangle with side lengths x x , y y , and z z , and area A A . Given that x 4 + y 4 + z 4 8 = 64 A 2 \dfrac {x^4+y^4+z^4}8 =64-A^2 and that x + y + z = 4 A x+y+z=4A , find the perimeter of the triangle.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 26, 2020

Let z z be the hypotenuse of the right triangle, then A = x y 2 A=\dfrac {xy}2 and by Pythagorean theorem x 2 + y 2 = z 2 x^2 + y^2 = z^2 . Then

x + y + z = 4 A x + y = 4 A z Squaring both sides x 2 + 2 x y + y 2 = 16 A 2 8 A z + z 2 z 2 + 4 A = 16 A 2 8 A z + z 2 4 A = 16 A 2 8 A z 4 A = 2 z + 1 \begin{aligned} x+y+z & = 4A \\ x+y & = 4A-z & \small \blue{\text{Squaring both sides}} \\ x^2 + 2xy + y^2 & = 16A^2 - 8Az + z^2 \\ z^2 + 4A & = 16A^2 - 8Az + z^2 \\ 4A & = 16A^2 - 8Az \\ \implies 4A & = 2z + 1 \end{aligned}

And

x 4 + y 4 + z 4 8 = 64 A 2 Multiply both sides by 8 ( x 2 + y 2 ) 2 2 x 2 y 2 + z 4 = 512 8 A 2 z 4 8 A 2 + z 4 = 512 8 A 2 z 4 = 256 z = 4 \begin{aligned} \frac {x^4+y^4+z^4}8 & = 64 - A^2 & \small \blue{\text{Multiply both sides by }8} \\ (x^2+y^2)^2 - 2x^2y^2 + z^4 & = 512 - 8A^2 \\ z^4 - 8A^2 + z^4 & = 512 - 8A^2 \\ z^4 & = 256 \\ \implies z & = 4 \end{aligned}

Then the perimeter x + y + z = 4 A = 2 z + 1 = 9 x+y+z = 4A = 2z+1 = \boxed 9 .

Nice solution. That's how I did it.

Krishna Karthik - 1 year, 2 months ago
Felix Belair
Mar 26, 2020

Since we know that xyz is a right angled triangle: we know that A = x y 2 A=\frac { xy }{ 2 } and x 2 + y 2 = z 2 { x }^{ 2 }+{ y }^{ 2 }={ z }^{ 2 } are true. Thus x 4 + y 4 + z 4 = 512 2 x 2 y 2 ( x 2 + y 2 ) 2 + z 4 = 512 2 z 4 = 512 z = 4 { x }^{ 4 }+{ y }^{ 4 }+{ z }^{ 4 }=512-2{ x }^{ 2 }{ y }^{ 2 }\quad \Longrightarrow \quad { ({ x }^{ 2 }+{ y }^{ 2 }) }^{ 2 }+{ z }^{ 4 }=512\quad \Longrightarrow \quad 2{ z }^{ 4 }=512\quad \Longrightarrow \quad z=4 We also know that x + y + z = 4 A x+y+z=4A , so x + y + z = 2 x y x+y+z=2xy would hold. We can then deduce that x 2 + y 2 = z 2 x 2 + y 2 + 2 x y = 16 + x + y + 4 ( x + y ) 2 ( x + y ) 20 = 0 { x }^{ 2 }+{ y }^{ 2 }={ z }^{ 2 }\Rightarrow { x }^{ 2 }+{ y }^{ 2 }+2xy=16+x+y+4\Rightarrow { (x+y) }^{ 2 }-(x+y)-20=0 . After solving the quadratic, we obtain 5 (we reject the -4), thus the perimeter is equal to 9

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...