Perimeter / Radius = 2 π 2 \pi

Geometry Level 3

A B AB is a diameter of the circle above, and C C is a point on the circumference such that
Area of Circle Area of A B C = 2 π . \frac { \text{Area of Circle} } { \text{ Area of } \triangle ABC } = 2 \pi. If B < A \angle B < \angle A , what is the measure of B \angle B in degrees?


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Drop a perpendicular from C onto diameter AB. Let the foot of perpendicular be D. Let centre of circle be O. We shall try to find B \angle B by first finding C O A \angle COA .

Area of Circle Area of A B C = 2 π \frac { \text{Area of Circle} } { \text{ Area of } ABC } = 2 \pi

π r 2 Area of A B C = 2 π \frac { \pi r^2 } { \text{ Area of } ABC } = 2 \pi

Area of A B C = r 2 / 2 \text{ Area of } ABC =r^2/2

Area of A B C = 1 / 2 A B C D \text{ Area of } ABC =1/2 AB * CD

And A B = 2 r AB=2r

C D = r / 2 CD=r/2

In Triangle COD, we know CD and CO (=r). Thus sin ( C O A ) = C D C O \sin ( \angle COA )=\frac{CD}{CO} or sin ( C O A ) = 1 / 2 \sin ( \angle COA )=1/2 .

Thus angle COA is 30 while angle B is C O A 2 = 15 \frac{\angle COA}{2}=15

Thus answer is 15 .

ѕσmє míѕtαkєѕ hαѕ σccurrєd...AB = 2r nσt AD=2r :)

Yashu Kumar - 4 years, 3 months ago

I like this approach too :)

Chung Kevin - 4 years, 4 months ago

Very nice solution! :-D

Ojasee Duble - 4 years, 4 months ago

Let r r be the radius of the circle. By Thales' Theorem , as A B AB is a diameter Δ A B C \Delta ABC is right-angled at C C , so

A C = A B sin ( B ) = 2 r sin ( B ) |AC| = |AB|\sin(\angle B) = 2r \sin(\angle B) and B C = A B cos ( B ) = 2 r cos ( B ) |BC| = |AB|\cos(\angle B) = 2r \cos(\angle B) .

The area of Δ A B C \Delta ABC then equals 1 2 A C B C = 1 2 × 4 r 2 sin ( B ) cos ( B ) = r 2 sin ( 2 × B ) \dfrac{1}{2} |AC||BC| = \dfrac{1}{2} \times 4r^{2}\sin(\angle B)\cos(\angle B) = r^{2} \sin(2 \times \angle B) .

As the area of the circle is π r 2 \pi r^{2} , the given equation becomes

π r 2 r 2 sin ( 2 × B ) = 2 π sin ( 2 × B ) = 1 2 2 × B = 3 0 \dfrac{\pi r^{2}}{r^{2} \sin(2 \times \angle B)} = 2\pi \Longrightarrow \sin(2 \times \angle B) = \dfrac{1}{2} \Longrightarrow 2 \times \angle B = 30^{\circ} or 15 0 B = 1 5 150^{\circ} \Longrightarrow \angle B = 15^{\circ} or 7 5 75^{\circ} .

Since we require B < A \angle B \lt \angle A we see that A = 7 5 \angle A = 75^{\circ} and B = 1 5 \angle B = \boxed{15^{\circ}} .

Ah yes, that's how I hid sin 2 B = 1 2 \sin 2 \angle B = \frac{1}{2} .

It's hard to come up with an angle that isn't 30, 45, 60.

Chung Kevin - 4 years, 4 months ago

You might want to mention C is right because of Thales.

Peter van der Linden - 4 years, 4 months ago

Log in to reply

Good suggestion. Edit made. :)

Brian Charlesworth - 4 years, 4 months ago

WLOG let r=1. So area of circle = π \pi .
Area of ABC =1/2 * ab.
So ab=1. But a 2 + b 2 = 2 2 . a^2+b^2=2^2. .
( a + b ) 2 = 6 , . . . . . . . . ( a b ) 2 = 2. a + b = ± 6 , . . . . . . . a b = ± 2 . a = 1 + 3 2 B = A r c C o s 1 + 3 2 2 = 15 \therefore (a+b)^2=6,........ (a-b)^2=2.\\ \therefore a+b= \pm \sqrt6,.......a-b=\pm \sqrt2.\ \therefore a=\dfrac{1 +\sqrt3}{\sqrt2}\\ \implies B=ArcCos\dfrac{1 +\sqrt3}{2\sqrt2}=\Large 15


Or just cos(B)=(1+√3)/(2√2), sin(B)=√(1-(4+2√3)/8)=(√3-1)/√8 sin(2B)=2(√3-1)(√3+1)/8=1/2 =sin(30°)=sin(150°), because B<45° We conclude 2B=30°,B=15°

Nikola Djuric - 4 years, 3 months ago

Log in to reply

Thanks. Just putting it in Latex.
O r j u s t c o s ( B ) = 1 + 3 2 2 , s i n ( B ) = 1 4 + 2 3 8 = 3 1 8 s i n ( 2 B ) = 2 ( 3 1 ) ( 3 + 1 ) 8 = 1 2 = s i n ( 30 ° ) = s i n ( 150 ° ) , B < 45 ° W e c o n c l u d e 2 B = 30 ° , B = 15 ° \color{#D61F06}{Or~ just ~cos(B)=\dfrac{1+\sqrt3}{2\sqrt2}, \\ sin(B)=\sqrt{ 1-\dfrac{4+2 \sqrt3} 8 }\\ =\dfrac{\sqrt3-1}{\sqrt8} sin(2B)\\ =\dfrac{2(√3-1)(√3+1)} 8=\dfrac 1 2 =sin(30°)=sin(150°), \\ \because~B<45°~ We ~conclude ~2B=30°,B=15°} \\ ~~~~~\\ ~~~~~\\

Shall I rearrange as under?
c o s ( B ) = 1 + 3 2 2 = 1 + 3 8 , s i n ( B ) = 1 4 + 2 3 8 = 4 2 3 8 = 3 1 8 . s i n ( 2 B ) = 2 s i n ( B ) c o s ( B ) = 2 ( 3 1 ) ( 3 + 1 ) 8 . = 1 2 = S i n 30 = s i n ( 150 ° ) B < 45 ° W e c o n c l u d e 2 B = 30 ° , B = 15 ° \color{#3D99F6}{cos(B)=\dfrac{1+\sqrt3}{2\sqrt2}=\dfrac{1+\sqrt3}{\sqrt8}, \\ \therefore~sin(B)=\sqrt{ 1-\dfrac{4+2 \sqrt3} 8 }=\sqrt{ \dfrac{4-2 \sqrt3} 8}=\dfrac{\sqrt3-1}{\sqrt8}.\\ sin(2B)=2*sin(B)*cos(B)=\dfrac{2*(\sqrt3-1)(\sqrt3+1)} 8.\\ =\dfrac 1 2=Sin30=sin(150°)\\ \because~B<45°~ We ~conclude ~2B=30°,B=15°}

Niranjan Khanderia - 4 years, 3 months ago
Marta Reece
Feb 13, 2017

Start with the right triangle. Set one of the legs arbitrarily as 1, the other a a . Area of the triangle is a 2 \frac{a}{2} .

Radius of the circle is half of the hypotenuse. r = 0.5 × 1 + a 2 r=0.5\times\sqrt{1+a^2} .

Area of the circle is π 4 × ( 1 + a 2 ) \frac{\pi}{4}\times(1+a^2) .

Area of circle is is supposed to be 2 π 2\pi times area of triangle. This gives us a quadratic equations for a a : a 2 4 a + 1 = 0 a^2-4a+1=0

The larger solution gives the smaller angle, and it is: a = 2 + 3 a=2+\sqrt{3}

The angle is then a r c t a n ( 1 2 + 3 ) = 1 5 arctan(\frac{1}{2+\sqrt{3}})=15^\circ .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...