Perimeter=Area

Find the sum of hypotenuse of all right triangles with integer side lengths such that their areas and perimeters are equal.


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Guilherme Niedu
Aug 9, 2018

Let each cathetus be a a and b b and the hypotenuse be c c . Then:

a b 2 = a + b + a 2 + b 2 \large \displaystyle \frac{ab}{2} = a + b + \sqrt{a^2+b^2}

a b 2 a b = a 2 + b 2 \large \displaystyle \frac{ab}{2} - a - b = \sqrt{a^2+b^2}

( a b ) 2 4 + a 2 + b 2 a 2 b a b 2 + 2 a b = a 2 + b 2 \large \displaystyle \frac{(ab)^2}{4} + a^2 +b^2 - a^2b - ab^2 + 2ab = a^2+b^2

( a b ) 2 4 a 2 b a b 2 + 2 a b = 0 \large \displaystyle \frac{(ab)^2}{4} - a^2b - ab^2 + 2ab = 0

a b 4 a b + 2 = 0 \large \displaystyle \frac{ab}{4} - a - b + 2 = 0

b = 4 a 8 a 4 \large \displaystyle b = \frac{4a-8}{a-4}

b = 4 + 8 a 4 \large \displaystyle b = 4 + \frac{8}{a-4}

So, for b b to be an integer, a 4 a-4 should be ± 1 , ± 2 , ± 4 , ± 8 \pm 1, \pm2, \pm 4, \pm 8 . For a 4 a-4 equal to 8 -8 or 4 -4 , a 0 a \leq 0 . For a 4 a-4 equal to 2 -2 or 1 -1 , b 0 b \leq 0 .

For a 4 = 1 a-4 = 1 , a = 5 , b = 12 a = 5, b=12 . For a 4 = 8 a-4 = 8 , a = 12 , b = 5 a = 12, b=5 . This is the same right triangle, with c = 13 \color{#20A900} \boxed{c=13} .

For a 4 = 2 a-4 = 2 , a = 6 , b = 8 a = 6, b=8 . For a 4 = 4 a-4 = 4 , a = 8 , b = 6 a = 8, b=6 . This is the same right triangle, with c = 10 \color{#20A900} \boxed{c=10} .

So, the sum of all posible hypotenuses is 13 + 10 = 23 \color{#3D99F6} 13 + 10 = \boxed{23}

Brian Moehring
Aug 9, 2018

By Euclid's formula, the pythagorean triples are generated by k ( m 2 n 2 ) , k ( 2 m n ) , k ( m 2 + n 2 ) k(m^2-n^2), k(2mn), k(m^2+n^2) where m > n , k m>n, k are positive integers.

Using these parameters, the perimeter P P and the area A A are given by P = k ( m 2 n 2 ) + k ( 2 m n ) + k ( m 2 + n 2 ) = 2 m k ( m + n ) A = 1 2 k ( m 2 n 2 ) k ( 2 m n ) = m n k 2 ( m + n ) ( m n ) P = k(m^2-n^2) + k(2mn) + k(m^2+n^2) = 2mk(m+n) \\ A = \frac{1}{2}\cdot k(m^2-n^2) \cdot k(2mn) = mnk^2(m+n)(m-n) so by setting them equal and canceling common [necessarily nonzero] factors: 2 m k ( m + n ) = P = A = m n k 2 ( m + n ) ( m n ) 2 = n k ( m n ) 2mk(m+n) = P = A = mnk^2(m+n)(m-n) \\ \implies \quad 2 = nk(m-n) so one of n , k , m n n, k, m-n equals 2 2 and the other two equal 1 1 .

  • If n = 2 , k = 1 , m n = 1 , n=2, k=1, m-n=1, then m = 1 + 2 = 3. m=1+2 = 3. This gives the pythagorean triple { k ( m 2 n 2 ) , k ( 2 m n ) , k ( m 2 + n 2 ) } = { 5 , 12 , 13 } \Big\{k(m^2-n^2), k(2mn), k(m^2+n^2)\Big\} = \{5, 12, 13\}
  • If n = 1 , k = 2 , m n = 1 , n=1, k=2, m-n=1, then m = 1 + 1 = 2. m=1+1 = 2. This gives the pythagorean triple { k ( m 2 n 2 ) , k ( 2 m n ) , k ( m 2 + n 2 ) } = { 6 , 8 , 10 } \Big\{k(m^2-n^2), k(2mn), k(m^2+n^2)\Big\} = \{6, 8, 10\}
  • If n = 1 , k = 1 , m n = 2 , n=1, k=1, m-n=2, then m = 2 + 1 = 3. m=2+1 = 3. This gives the pythagorean triple { k ( m 2 n 2 ) , k ( 2 m n ) , k ( m 2 + n 2 ) } = { 8 , 6 , 10 } \Big\{k(m^2-n^2), k(2mn), k(m^2+n^2)\Big\} = \{8, 6, 10\} (which is a repeat)

Therefore the sum of the hypotenuses of the distinct triangles is 13 + 10 = 23 13 + 10 = \boxed{23}

10 + 13 = = 23 10+13==23

Freddie Hand
Aug 11, 2018

Hmmmm, I think I posted this one here

But it's okay, I don't mind.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...