Perimeters!

Geometry Level 3

In the diagram above, the sides of A B C \triangle{ABC} are tangent to the inscribed circle with radius c c and center O O at points E , D E,D and F F where B D = a BD = a and D C = b DC = b .

Let a b > c 2 ab > c^2 and P P be the perimeter of A B C \triangle{ABC} . Find ( a b c 2 ) P a b ( a + b ) \dfrac{(ab - c^2)P}{ab(a + b)} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rocco Dalto
May 8, 2020

Let θ 1 = O B D \theta_{1} = \angle{OBD} and θ 2 = O B E θ 1 + θ 2 = 2 θ 1 \theta_{2} = \angle{OBE} \implies \theta_{1} + \theta_{2} = 2\theta_{1} , where

cos ( θ 1 ) = a a 2 + c 2 cos ( θ ) = cos ( 2 θ 1 ) = 2 ( a 2 a 2 + c 2 ) 1 = a 2 c 2 a 2 + c 2 \cos(\theta_{1}) = \dfrac{a}{\sqrt{a^2 + c^2}} \implies \cos(\theta) = \cos(2\theta_{1}) = 2(\dfrac{a^2}{a^2 + c^2}) - 1 = \dfrac{a^2 - c^2}{a^2 + c^2}

Using law of cosines we obtain:

( b + x ) 2 = ( a + x ) 2 + ( a + b ) 2 2 ( a + x ) ( a + b ) ( a 2 c 2 a 2 + c 2 ) (b + x)^2 = (a + x)^2 + (a + b)^2 - 2(a + x)(a + b)(\dfrac{a^2 - c^2}{a^2 + c^2}) \implies

b 2 + 2 b x + x 2 = a 2 + 2 a x + x 2 + a 2 + 2 a b + b 2 2 ( a + x ) ( a + b ) ( a 2 c 2 a 2 + c 2 ) b^2 + 2bx + x^2 = a^2 + 2ax + x^2 + a^2 + 2ab + b^2 - 2(a + x)(a + b)(\dfrac{a^2 - c^2}{a^2 + c^2}) \implies

( a b ) x + a ( a + b ) = ( a + x ) ( a + b ) ( a 2 c 2 ) a 2 + c 2 (a - b)x + a(a + b) = \dfrac{(a + x)(a + b)(a^2 - c^2)}{a^2 + c^2}

Let j = a 2 c 2 j = a^2 - c^2 and m = a 2 + c 2 m = a^2 + c^2 \implies

m ( a b ) x + m a ( a + b ) = j a ( a + b ) + j ( a + b ) x m(a - b)x + ma(a + b) = ja(a + b) + j(a + b)x \implies

( m ( a b ) j ( a + b ) ) x = a ( a + b ) ( j m ) (m(a - b) - j(a + b))x = a(a + b)(j - m) \implies

( a b c 2 ) x = ( a + b ) c 2 x = ( a + b ) c 2 a b c 2 (ab - c^2)x = (a + b)c^2 \implies x = \dfrac{(a + b)c^2}{ab - c^2} \implies

A C = x + b = a ( b 2 + c 2 ) a b c 2 , A B = x + a = b ( a 2 + c 2 ) a b c 2 AC = x + b = \dfrac{a(b^2 + c^2)}{ab - c^2}, AB = x + a = \dfrac{b(a^2 + c^2)}{ab - c^2}

and B C = a + b P = B C + A C + A B = 2 a b ( a + b ) a b c 2 BC = a + b \implies P = BC + AC + AB = \dfrac{2ab(a + b)}{ab - c^2} \implies ( a b c 2 ) P a b ( a + b ) = 2 \dfrac{(ab - c^2)P}{ab(a + b)} = \boxed{2} .

The circle center O O is also the incenter of A B C \triangle ABC . O A OA bisects A \angle A and leaving two congruent right triangles A E O \triangle AEO and A F O \triangle AFO , therefore A E = A F = d AE=AF=d , similarly, O B OB and O C OC bisect B \angle B and C \angle C respectively. Therefore, the perimeter P = 2 ( a + b + d ) P = 2(a+b+d) . To find P P , we need only to find d d .

d = c tan A 2 = c tan ( 9 0 B 2 C 2 ) = c cot ( B 2 + C 2 ) = c tan ( B 2 + C 2 ) = c ( tan B 2 + tan C 2 ) 1 tan B 2 tan C 2 Note that tan B 2 = c a and tan C 2 = c b = c ( c a + c b ) 1 c 2 a b = c 2 ( a + b ) a b c 2 \begin{aligned} d & = \frac c{\tan \frac A2} = \frac c{\tan \left(90^\circ - \frac B2 - \frac C2\right)} \\ & = \frac c{\cot \left(\frac B2 + \frac C2 \right)} = c \tan \left(\frac B2 + \frac C2\right) \\ & = \frac {c\left(\tan \frac B2+\tan \frac C2\right)}{1-\tan \frac B2 \tan \frac C2} & \small \blue{\text{Note that }\tan \frac B2 = \frac ca \text{ and }\tan \frac C2 = \frac cb} \\ & = \frac {c\left(\frac ca+\frac cb\right)}{1-\frac {c^2}{ab}} = \frac {c^2(a+b)}{ab-c^2} \end{aligned}

Therefore,

P = 2 ( a + b + d ) = 2 ( a + b + c 2 ( a + b ) a b c 2 ) = 2 ( a b ( a + b ) a b c 2 ) ( a b c 2 ) P a b ( a + b ) = 2 \begin{aligned} P & = 2(a+b+d) = 2\left(a+b+\frac {c^2(a+b)}{ab-c^2}\right) = 2\left(\frac {ab(a+b)}{ab-c^2}\right) \\ \implies \frac {(ab-c^2)P}{ab(a+b)} & = \boxed 2 \end{aligned}

Let A E = A F = d |\overline {AE}|=|\overline {AF}|=d . Then P = 2 s = 2 ( a + b + d ) s = a + b + d P=2s=2(a+b+d)\implies s=a+b+d\implies area of A B C = = a b d ( a + b + d ) \triangle {ABC}=\triangle =\sqrt {abd(a+b+d)} .

Therefore c = s = a b d a + b + d a b c 2 = a b ( a + b ) a + b + d c=\dfrac{\triangle }{s}=\sqrt {\frac{abd}{a+b+d}}\implies ab-c^2=\dfrac{ab(a+b)}{a+b+d} .

Hence a b c 2 a b ( a + b ) = 1 a + b + d = 2 P \dfrac{ab-c^2}{ab(a+b)}=\dfrac{1}{a+b+d}=\dfrac{2}{P} .

Therefore ( a b c 2 ) P a b ( a + b ) = 2 \dfrac{(ab-c^2)P}{ab(a+b)}=\boxed 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...