Perimeters and Areas!

Geometry Level 3

If the area of red shaded region is 9 π 7 9\pi - 7 and the sum of the length and the width of rectangle O A C D OACD is r + 2 r + 2 , where r r is the radius of the quarter circle, and the perimeter P P of the shaded region can be expressed as P = α + β π P = \alpha + \beta\pi , where α \alpha and β \beta are coprime positive integers, find α + β \alpha + \beta .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 17, 2021

Let A O = a AO=a and O D = b OD=b . Then the area of the red region is π r 2 4 a b 2 = 9 π 7 \dfrac {\pi r^2}4 - \dfrac {ab}2 = 9\pi - 7 . Assuming that π r 2 4 = 9 π r = 6 \dfrac {\pi r^2}4 = 9\pi \implies r = 6 and a b 2 = 7 a b = 14 \dfrac {ab}2 = 7 \implies ab = 14 . Given that a + b = r + 2 = 8 b = 8 a a+b = r + 2 = 8 \implies b = 8 - a . Then

a b = 14 a ( 8 a ) = 14 a 2 8 a + 14 = 0 a = 8 ± 8 2 4 14 2 = 4 ± 2 \begin{aligned} ab & = 14 \\ a(8-a) & = 14 \\ a^2 - 8a + 14 & = 0 \\ \implies a & = \frac {8 \pm \sqrt{8^2-4\cdot 14}}2 = 4 \pm \sqrt 2 \end{aligned}

Assuming b > a b>a , then a = 4 2 a=4-\sqrt 2 and b = 4 + 2 b=4+\sqrt 2 . Then the perimeter of the red region:

P = A B + A D + D E + B C E a r c = r a + a 2 + b 2 + r b + 2 π r 4 = 2 + 2 + 6 + 2 2 + 3 π = 10 + 3 π \begin{aligned} P & = \overline{AB} + \overline{AD} + \overline{DE} + \overbrace{BCE}^{\rm arc} \\ & = r-a + \sqrt{a^2+b^2} + r - b + \frac {2\pi r}4 \\ & = 2 + \sqrt 2 + 6 + 2 - \sqrt 2 + 3\pi \\ & = 10 + 3\pi \end{aligned}

Therefore α + β = 10 + 3 = 13 \alpha + \beta = 10 + 3 = \boxed {13} .

@Chew-Seong Cheong - Hi! It's an easy way to locate the value of r r (I used it too), but how do we know that a b 2 \dfrac{ab}{2} is rational?

Thanos Petropoulos - 4 months, 3 weeks ago

Log in to reply

You are right, we don't know. I just have to assume it first.

Chew-Seong Cheong - 4 months, 3 weeks ago
Rocco Dalto
Jan 17, 2021

The diagonals of rectangle O A C D OACD are congruent A D O C = r \implies \overline{AD} \cong \overline{OC} = r \implies

P = r + ( r w ) + r ( r + 2 w ) + π r 2 = ( 4 + π ) r 4 2 P = r + (r - w) + r - (r + 2 - w) + \dfrac{\pi r}{2} = \dfrac{(4 + \pi)r - 4}{2}

Using point C C above we have: ( r + 2 w ) 2 + w 2 = r 2 (r + 2 - w)^2 + w^2 = r^2 \implies

2 w 2 2 ( r + 2 ) w + 4 ( r + 1 ) = 0 w 2 ( r + 2 ) w + 2 ( r + 1 ) = 0 2w^2 - 2(r + 2)w + 4(r + 1) = 0 \implies w^2 - (r + 2)w + 2(r + 1) = 0 \implies

w = r + 2 ± ( r 2 ) 2 8 2 w = \dfrac{r + 2 \pm \sqrt{(r - 2)^2 - 8}}{2}

Let A R A_{R} be the red shaded region.

Using either value of w w \implies

A R = 1 4 ( π r 2 1 2 ( r + 2 ( r 2 ) 2 8 ) ( r + 2 + ( r 2 ) 2 8 ) ) = A_{R} = \dfrac{1}{4}(\pi r^2 - \dfrac{1}{2}(r + 2 - \sqrt{(r - 2)^2 - 8})(r + 2 + \sqrt{(r - 2)^2 - 8})) =

1 4 ( π r 2 1 2 ( ( r + 2 ) 2 ( ( r 2 ) 2 8 ) ) ) = 1 4 ( π r 2 4 r 4 ) = 9 π 7 \dfrac{1}{4}(\pi r^2 - \dfrac{1}{2}((r + 2)^2 - ((r - 2)^2 - 8))) = \dfrac{1}{4}(\pi r^2 - 4r - 4) = 9\pi - 7

π r 2 4 r + 12 ( 2 3 π ) = 0 r = 2 ( 1 ± ( 3 π 1 ) ) π \implies \pi r^2 - 4r + 12(2 - 3\pi) = 0 \implies r = \dfrac{2(1 \pm (3\pi - 1))}{\pi} dropping negative root

r = 6 \implies r = 6 \implies P = 20 + 6 π 2 = 10 + 3 π = P = \dfrac{20 + 6\pi}{2} = 10 + 3\pi = α + β π α + β = 13 \alpha + \beta\pi \implies \alpha + \beta = \boxed{13} .

Let O D = A C = x OD=AC=x and O A = C D = y OA=CD=y . First it is given that x + y = r + 2 x+y=r+2 By Pythagoras’s theorem on right O A C \triangle OAC ,

A C 2 + O A 2 = O C 2 x 2 + y 2 = r 2 ( x + y ) 2 2 x y r 2 = 0 ( r + 2 ) 2 2 x y r 2 = 0 4 r + 4 2 x y = 0 ( 1 ) \begin{aligned} A{{C}^{2}}+O{{A}^{2}}=O{{C}^{2}} & \Rightarrow {{x}^{2}}+{{y}^{2}}={{r}^{2}} \\ & \Leftrightarrow {{\left( x+y \right)}^{2}}-2xy-{{r}^{2}}=0 \\ & \Leftrightarrow {{\left( r+2 \right)}^{2}}-2xy-{{r}^{2}}=0 \\ & \Leftrightarrow 4r+4-2xy=0 \ \ \ \ \ (1)\\ \end{aligned} Moreover, for the area of the red region we have

[ A B C E D ] = [ O B C E ] [ O A D ] 9 π 7 = 1 4 π r 2 1 2 x y 2 x y = π r 2 36 π + 28 ( 2 ) \begin{aligned} \left[ ABCED \right]=\left[ OBCE \right]-\left[ OAD \right] & \Rightarrow 9\pi -7=\frac{1}{4}\pi {{r}^{2}}-\frac{1}{2}xy \\ & \Leftrightarrow 2xy=\pi {{r}^{2}}-36\pi +28 \ \ \ \ \ (2)\\ \end{aligned} Combining ( 1 ) (1) and ( 2 ) (2) , we have an equation for r r :

4 r + 4 π r 2 + 36 π 28 = 0 π r 2 4 r + 24 36 π = 0 r > 0 r = 6 4r+4-\pi {{r}^{2}}+36\pi -28=0\Leftrightarrow \pi {{r}^{2}}-4r+24-36\pi =0\overset{r>0}{\mathop{\Leftrightarrow }}\,r=6 For the perimeter,

P = A B + B C D + E D + A D = ( r y ) + 1 4 2 π r + ( r x ) + r = 3 r ( x + y ) + π r 2 = 3 r ( r + 2 ) + π r 2 = r = 6 10 + 3 π \begin{aligned} P & =AB+BCD+ED+AD \\ & =\left( r-y \right)+\frac{1}{4}2\pi r+\left( r-x \right)+r \\ & =3r-\left( x+y \right)+\frac{\pi r}{2} \\ & =3r-\left( r+2 \right)+\frac{\pi r}{2} \\ & \overset{r=6}{\mathop{=}}\,10+3\pi \\ \end{aligned} For the answer, α = 10 \alpha=10 , β = 3 \beta=3 , thus, α + β = 13 \alpha+\beta=\boxed{13} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...