Periodic

Calculus Level 5

There is always a constant area A A above a line segment (of length 2 π 2\pi lying on the x-axis) and under the curve 1 sin 2 x + sin x + 1 \dfrac{1}{\sin^2{x}+\sin{x}+1} ,which equals A = p q q + p q π A=\dfrac{p}{q}\sqrt{q+p\sqrt{q}}\, \pi for coprime integers p p and q q .

  • Does this mean there is always a constant length L L of the curve 1 sin 2 x + sin x + 1 \dfrac{1}{\sin^2{x}+\sin{x}+1} above a line segment (of length 2 π 2\pi lying on the x-axis)?

Find p + q p+q and add 1 1 to your answer if you think the above statement is correct, otherwise add 0 0


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 2, 2018

If ω = 1 2 + 1 2 i 3 \omega = -\tfrac12 + \tfrac12i\sqrt{3} is a primitive cube root of unity, then 0 2 π d x sin x ω = z = 1 d z i z [ ( z z 1 2 i ) ω ] = 2 z = 1 d z z 2 2 i ω z 1 = 2 z = 1 d z ( z α + ) ( z α ) = 4 π i R e s z = α + 1 ( z α + ) ( z α ) = 4 π i α + α \begin{aligned} \int_0^{2\pi} \frac{dx}{\sin x - \omega} & = \; \int_{|z|=1} \frac{dz}{iz\left[\big(\frac{z-z^{-1}}{2i}\big) - \omega\right]} \; = \; 2\int_{|z|=1} \frac{dz}{z^2 - 2i\omega z - 1} \\ & = \; 2\int_{|z|=1} \frac{dz}{(z-\alpha_+)(z-\alpha_-)} \; = \; 4\pi i\,\mathrm{Res}_{z=\alpha_+} \frac{1}{(z-\alpha_+)(z-\alpha_-)} \; = \; \frac{4\pi i}{\alpha_+ - \alpha_-} \end{aligned} where α ± = i ω ± 1 ω 2 = ± 3 + 2 3 3 2 + i ± 2 3 3 1 2 \alpha_{\pm} \; = \; i\omega \pm \sqrt{1-\omega^2} \; = \; \frac{\pm\sqrt{3+2\sqrt{3}}-\sqrt{3}}{2} + i\frac{\pm\sqrt{2\sqrt{3}-3} - 1}{2} noting that α + < 1 < α |\alpha_+| < 1 < |\alpha_-| . Thus 0 2 π d x sin x ω = 4 π i 3 + 2 3 + i 2 3 3 = π i 3 [ 3 + 2 3 i 2 3 3 ] \begin{aligned} \int_0^{2\pi} \frac{dx}{\sin x - \omega} & = \; \frac{4\pi i}{\sqrt{3+2\sqrt{3}} + i\sqrt{2\sqrt{3}-3}} \; = \; \frac{\pi i}{\sqrt{3}}\Big[\sqrt{3+2\sqrt{3}} - i\sqrt{2\sqrt{3}-3}\Big] \end{aligned} Thus 0 2 π d x sin 2 x + sin x + 1 = 0 2 π d x ( sin x ω ) ( sin x ω 2 ) = 1 ω ω 2 0 2 π ( 1 sin x ω 1 sin x ω 2 ) = 1 i 3 × 2 i I m ( 0 2 π d x sin x ω ) = 2 3 × π 3 3 + 2 3 = 2 3 π 3 + 2 3 \begin{aligned} \int_0^{2\pi} \frac{dx}{\sin^2x + \sin x + 1} & = \; \int_0^{2\pi} \frac{dx}{(\sin x - \omega)(\sin x - \omega^2)} \; = \; \frac{1}{\omega - \omega^2}\int_0^{2\pi} \left(\frac{1}{\sin x - \omega} - \frac{1}{\sin x - \omega^2}\right) \\ & = \; \frac{1}{i\sqrt{3}} \times 2i \,\mathrm{Im}\left(\int_0^{2\pi} \frac{dx}{\sin x - \omega}\right) \; = \; \frac{2}{\sqrt{3}} \times \frac{\pi}{\sqrt{3}}\sqrt{3 + 2\sqrt{3}} \\ & = \; \tfrac23\pi\sqrt{3+ 2\sqrt{3}} \end{aligned} so that p = 2 p=2 and q = 3 q=3 .

Since the arc-length is the integral of g ( x ) = 1 + f ( x ) 2 g(x) = \sqrt{1 + f'(x)^2} with respect to x x , where f ( x ) = 1 sin 2 x + sin x + 1 f(x) = \frac{1}{\sin^2x + \sin x + 1} is a periodic function of x x of period 2 π 2\pi , the function g ( x ) g(x) is also periodic of period 2 π 2\pi , and hence the arc-length over an interval of length 2 π 2\pi is independent of that interval's position. This makes the answer 2 + 3 + 1 = 6 2 + 3 + 1 = \boxed{6} .

There's an error in the second last step

= 1 i 3 × 2 i I m ( 0 2 π d x sin x x ) = \; \frac{1}{i\sqrt{3}} \times 2i \,\mathrm{Im}\left(\int_0^{2\pi} \frac{dx}{\sin x - {\color{#D61F06}x}}\right) \;

Isn't it supposed to be 0 2 π d x sin x ω \int_0^{2\pi} \frac{dx}{\sin x - \omega} ?

Digvijay Singh - 3 years, 4 months ago

Log in to reply

Well spotted. Typo corrected...

Mark Hennings - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...