Periodic functions

Calculus Level 5

Let f : R R f: \mathbb {R \to R} be a continuous function satisfying f ( x + 1 ) = f ( x ) 5 f ( x ) 3 f(x+1)= \dfrac {f(x)-5}{f(x)-3} , where x R x \in \mathbb R . Find the minimum period of the function.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 23, 2019

f ( x + 1 ) = f ( x ) 5 f ( x ) 3 f ( x + 2 ) = f ( x + 1 ) 5 f ( x + 1 ) 3 = f ( x ) 5 f ( x ) 3 5 f ( x ) 5 f ( x ) 3 3 = 10 4 f ( x ) 4 2 f ( x ) = 5 2 f ( x ) 2 f ( x ) f ( x + 3 ) = 5 2 f ( x ) 2 f ( x ) 5 5 2 f ( x ) 2 f ( x ) 3 = 3 f ( x ) 5 f ( x ) 1 f ( x + 4 ) = 3 f ( x ) 5 f ( x ) 1 5 3 f ( x ) 5 f ( x ) 1 3 = 2 f ( x ) 2 = f ( x ) \begin{aligned} f(x+1) & = \frac {f(x)-5}{f(x)-3} \\ f(x+2) & = \frac {f(x+1)-5}{f(x+1)-3} = \frac {\frac {f(x)-5}{f(x)-3}-5}{\frac {f(x)-5}{f(x)-3}-3} = \frac {10-4f(x)}{4-2f(x)} = \frac {5-2f(x)}{2-f(x)} \\ f(x+3) & = \frac {\frac {5-2f(x)}{2-f(x)}-5}{\frac {5-2f(x)}{2-f(x)}-3} = \frac {3f(x)-5}{f(x)-1} \\ f(x+4) & = \frac {\frac {3f(x)-5}{f(x)-1}-5}{\frac {3f(x)-5}{f(x)-1}-3} = \frac {-2f(x)}{-2} = f(x) \end{aligned}

Therefore, the principal period of f ( x ) f(x) is 4 \boxed{4} .

@Yash Shroff , I think you meant "principal period" instead of "minimum period".

Chew-Seong Cheong - 2 years, 3 months ago
Joe Mansley
Jul 18, 2018

Applying the definition on f(x+1) gives you f(x+2)=(2f(x)-5)/(f(x)-2).

Similarly f(x+3)=(3f(x)-5)/(f(x)-1)

And f(x+4)=f(x).

Thus the period must be at least 4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...