Periods of fractions

Algebra Level 4

If the range of f ( x ) = 1 2 { x } { x } f(x) = \dfrac1{2 \{ -x \}} - \{ x\} is [ a , b ) [a,b ) for real x x , find a a to 3 decimal places.


Notation: { } \{ \cdot \} denotes the fractional part function .


The answer is 0.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 30, 2017

f ( x ) = 1 2 { x } { x } Note that { x } = 1 { x } = 1 2 ( 1 { x } ) { x } b = lim { x } 1 f ( x ) = = 1 2 ( 1 { x } ) + ( 1 { x } ) 1 By AM-GM inequality: 1 2 ( 1 { x } ) + ( 1 { x } ) 2 2 2 1 \begin{aligned} f(x) & = \frac 1{2\color{#3D99F6}\{-x\}} - \{x\} & \small \color{#3D99F6} \text{Note that } \{-x\} = 1 - \{x\} \\ & = \frac 1{2\color{#3D99F6}(1-\{x\})} - \{x\} & \small \color{#3D99F6} \implies b = \lim_{\{x\} \to 1} f(x) = \infty \\ & = {\color{#3D99F6} \frac 1{2(1-\{x\})} + (1 - \{x\})} - 1 & \small \color{#3D99F6} \text{By AM-GM inequality: }\frac 1{2(1-\{x\})} + (1 - \{x\}) \ge \frac 2{\sqrt 2} \\ & \ge \sqrt 2 - 1 \end{aligned}

a = 2 1 0.414 \implies a = \sqrt 2 - 1 \approx \boxed{0.414}

Tapas Mazumdar
Apr 30, 2017

Note that if x x is an integer then { x } \{-x\} will be equal to 0 0 making f ( x ) f(x) undefined. Thus x x is a non-integer and by the following property

{ x } + { x } = { 0 , if x Z 1 , if x R Z \{x\} + \{-x\} = \begin{cases} 0, & \text{if } x \in \mathbb{Z} \\ 1, & \text{if } x \in \mathbb{R} - \mathbb{Z} \end{cases}

we note that { x } = 1 { x } \{-x\} = 1 - \{x\} .

So

1 2 { x } { x } = 1 2 ( 1 { x } ) { x } \dfrac{1}{2 \{-x\}} - \{x\} = \dfrac{1}{2 \left( 1 - \{x\} \right)} - \{x\}

For simple calculations, let us denote { x } \{x\} by t t and equate f ( x ) f(x) to y y to get

1 2 ( 1 t ) t = y 2 t 2 + t ( 2 y 2 ) + ( 1 2 y ) = 0 \dfrac{1}{2(1-t)} - t = y \implies 2t^2 + t (2y-2) + (1-2y) = 0

As t = { x } t = \{x\} is real, therefore the discriminant Δ \Delta of the above quadratic in terms of t t is non-negative. Thus

Δ 0 ( 2 y 2 ) 2 4 2 ( 1 2 y ) 0 y 2 + 2 y 1 0 y ( , 1 2 ] [ 1 + 2 , ) \begin{aligned} & \Delta \ge 0 \\ \implies & {(2y-2)}^2 - 4 \cdot 2 \cdot (1-2y) \ge 0 \\ \implies & y^2 + 2y - 1 \ge 0 \\ \implies & y \in \left( - \infty , -1 - \sqrt{2} \right] \cup \left[ -1 + \sqrt{2} , \infty \right) \end{aligned}

But since t ( 0 , 1 ) t \in (0,1) , we note that y = 1 2 ( 1 t ) t y = \dfrac{1}{2(1-t)} - t is always positive in this interval. Hence

y [ 1 + 2 , ) y \in \left[ -1 + \sqrt{2} , \infty \right)

Note that y = f ( x ) y = f(x) itself is the range of f ( x ) f(x) and thus

a = 1 + 2 = 0.414 a = -1 + \sqrt{2} = \boxed{0.414}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...