Periods of repeating decimals!

A = 0. 19 + 0. 199 , B = 0. 19 × 0. 199 {A = 0.\overline{19} + 0.\overline{199}, \quad B = 0.\overline{19} \times 0.\overline{199}}

Recall that 0. 19 , 0.\overline{19}, for example, stands for the repeating decimal 0.19191919... 0.19191919... and that the period of a repeating decimal is the number of digits in the repeating part. In this case, the period of 0. 19 0.\overline{19} is 2.

Find the sum of the periods of A A and B B .


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mathh Mathh
Aug 7, 2015

The period of A A is 6 6 , because 191919 + 199199 = 39118 191919+199199=39118 and lcm ( 2 , 3 ) = 6 \text{lcm}(2,3)=6 .

The period of B B is 54 54 because:

B = 19 99 199 999 = 3781 98901 B=\frac{19}{99}\cdot\frac{199}{999}=\frac{3781}{98901}

and the least k Z 1 k\in\Bbb Z_{\ge 1} such that 98901 n = 1 0 k 1 98901n=10^k-1 for some n Z 1 n\in\Bbb Z_{\ge 1} is 54 54 .

It's because 98901 = 3 5 11 37 98901=3^5\cdot 11\cdot 37 and lcm ( ord 3 5 ( 10 ) , ord 11 ( 10 ) , ord 37 ( 10 ) ) = lcm ( 27 , 2 , 3 ) = 54 \text{lcm}\left(\text{ord}_{3^5}(10),\text{ord}_{11}(10),\text{ord}_{37}(10)\right)=\text{lcm}\left(27,2,3\right)=54 .

To see why ord 3 5 ( 10 ) = 27 \text{ord}_{3^5}(10)=27 , apply Binomial theorem:

( 1 + 9 ) k 1 + 9 k + 81 k ( k + 1 ) 2 1 ( m o d 3 5 ) (1+9)^k\equiv 1+9k+\frac{81k(k+1)}{2}\equiv 1\pmod{\! 3^5}

3 5 81 k 2 + 99 k 3 3 k ( 9 k + 11 ) \iff 3^5\mid 81k^2+99k\iff 3^3\mid k(9k+11) .

Since 3 9 k + 11 3\nmid 9k+11 , we have 3 3 k \iff 3^3\mid k , with the lowest positive k k being 27 27 .

na verdade a resposta é 59 pois o periodo de B é 53. abaixo está o resultado em decimal de B 1,0382301493 4160452371 5634826745 9378570489 6816007927 119 03

Joel Rodrigues - 5 years, 4 months ago

can you please explain me what does "ord " means?

Charuka Bandara - 4 years, 10 months ago

Log in to reply

"ord" denotes multiplicative order (https://en.wikipedia.org/wiki/Multiplicative_order). If n Z + , n 2 n\in\mathbb Z^+, n\ge 2 and a Z , gcd ( n , a ) = 1 a\in\mathbb Z, \gcd(n,a)=1 , then ord n ( a ) \text{ord}_n(a) denotes the least positive integer k k such that a k 1 ( m o d n ) a^k\equiv 1\pmod{n} .

mathh mathh - 4 years, 10 months ago

Log in to reply

Thanks a lot

Charuka Bandara - 4 years, 10 months ago

ordinal :)

Jules van Praag - 3 years, 2 months ago

Where would I find a free online course that would include practicing calculating the order of two such numbers as these?

John Williamson - 4 years, 10 months ago

The binomial theorem doesn't account for distinction between primes and squares that can be represented by only the difference of two other squares

Ryan Matthew - 3 years, 4 months ago

Log in to reply

i.e. 3 and 9, 3 and (5^2-4^2)

Ryan Matthew - 3 years, 4 months ago

I think period of B is 36 as (10^36-1)/(999*99) is an integer. So answer should be 36+6 = 42

Zakir Dakua - 5 years, 5 months ago

Log in to reply

Sorry, may be not.

Zakir Dakua - 5 years, 5 months ago
Bill Bell
Aug 5, 2015

Examine the output from this code.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
## http://code.activestate.com/recipes/578939-division-digit-by-digit-calculation/

def div(a,b,t):

    a1=str(a)
    if  "." in  a1:
        d1, d2 =a1.split(".")
        d2=d2.ljust(t,"0")    
    else:
        d1=a1
        d2="0"*t

    c=[];r1=0
    for i in d1:
            d11=int(str(r1)+i)
            c1=d11/b
            r1=d11%b
            c.append(c1);

    c.append(".")    
    for i in d2:
            d11=int(str(r1)+i)
            c1=d11/b
            r1=d11%b
            c.append(c1);


    c = "".join(map(str, c))
    while c[0] =="0": c =c[1:]
    if c[0]==".": c ="0"+c 

    return c 

from fractions import Fraction

a=Fraction(19,99)
b=Fraction(199,999)
A=a+b
B=a*b
print div(A.numerator,A.denominator,100)
print div(B.numerator,B.denominator,100)

Fractions are straight baller

Ryan Matthew - 3 years, 4 months ago
Soumik Pal
Nov 2, 2019

I am just explaining the crucial step of the sum in the easiest way. Work out the solution on your own.

0.19 stands for the repeating decimal (= 19/99):

0.1919191919191919191919191919191919191919191919191919…

and 0.199 for (= 199/999)

0.1991991991991991991991991991991991991991991991991991…

0.19 + 0.199 = 19/99 + 199/999 = 391118/999999

that is,

0.391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118…

Repeating decimal: 0.391118 (period 6)

0.19 * 0.199 = 19/99 * 199/999 = 3781/98901

3781/98901 = 3780/98901 + 1/98901

3780/98901 = 140/3663

0.038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220…

Repeating decimal: 0.0382200 (period 6)

And 1 / 98901 = is interesting:

0.00001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455…

0.0000101111212222323333434444545555656666767777878888990000 (period 54)

Can you figure out the solution now?

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...