A = 0 . 1 9 + 0 . 1 9 9 , B = 0 . 1 9 × 0 . 1 9 9
Recall that 0 . 1 9 , for example, stands for the repeating decimal 0 . 1 9 1 9 1 9 1 9 . . . and that the period of a repeating decimal is the number of digits in the repeating part. In this case, the period of 0 . 1 9 is 2.
Find the sum of the periods of A and B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
na verdade a resposta é 59 pois o periodo de B é 53. abaixo está o resultado em decimal de B 1,0382301493 4160452371 5634826745 9378570489 6816007927 119 03
can you please explain me what does "ord " means?
Log in to reply
"ord" denotes multiplicative order (https://en.wikipedia.org/wiki/Multiplicative_order). If n ∈ Z + , n ≥ 2 and a ∈ Z , g cd ( n , a ) = 1 , then ord n ( a ) denotes the least positive integer k such that a k ≡ 1 ( m o d n ) .
ordinal :)
Where would I find a free online course that would include practicing calculating the order of two such numbers as these?
The binomial theorem doesn't account for distinction between primes and squares that can be represented by only the difference of two other squares
I think period of B is 36 as (10^36-1)/(999*99) is an integer. So answer should be 36+6 = 42
Examine the output from this code.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|
Fractions are straight baller
I am just explaining the crucial step of the sum in the easiest way. Work out the solution on your own.
0.19 stands for the repeating decimal (= 19/99):
0.1919191919191919191919191919191919191919191919191919…
and 0.199 for (= 199/999)
0.1991991991991991991991991991991991991991991991991991…
0.19 + 0.199 = 19/99 + 199/999 = 391118/999999
that is,
0.391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118391118…
Repeating decimal: 0.391118 (period 6)
0.19 * 0.199 = 19/99 * 199/999 = 3781/98901
3781/98901 = 3780/98901 + 1/98901
3780/98901 = 140/3663
0.038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220038220…
Repeating decimal: 0.0382200 (period 6)
And 1 / 98901 = is interesting:
0.00001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455556566667677778788889900001011112122223233334344445455…
0.0000101111212222323333434444545555656666767777878888990000 (period 54)
Can you figure out the solution now?
Problem Loading...
Note Loading...
Set Loading...
The period of A is 6 , because 1 9 1 9 1 9 + 1 9 9 1 9 9 = 3 9 1 1 8 and lcm ( 2 , 3 ) = 6 .
The period of B is 5 4 because:
B = 9 9 1 9 ⋅ 9 9 9 1 9 9 = 9 8 9 0 1 3 7 8 1
and the least k ∈ Z ≥ 1 such that 9 8 9 0 1 n = 1 0 k − 1 for some n ∈ Z ≥ 1 is 5 4 .
It's because 9 8 9 0 1 = 3 5 ⋅ 1 1 ⋅ 3 7 and lcm ( ord 3 5 ( 1 0 ) , ord 1 1 ( 1 0 ) , ord 3 7 ( 1 0 ) ) = lcm ( 2 7 , 2 , 3 ) = 5 4 .
To see why ord 3 5 ( 1 0 ) = 2 7 , apply Binomial theorem:
( 1 + 9 ) k ≡ 1 + 9 k + 2 8 1 k ( k + 1 ) ≡ 1 ( m o d 3 5 )
⟺ 3 5 ∣ 8 1 k 2 + 9 9 k ⟺ 3 3 ∣ k ( 9 k + 1 1 ) .
Since 3 ∤ 9 k + 1 1 , we have ⟺ 3 3 ∣ k , with the lowest positive k being 2 7 .