Permutated Peculiar Powers

Algebra Level 5

Given that the complex numbers x , y , z x,y,z satisfy the equations: x + y + z = 5 x 3 + y 3 + z 3 = 19 x 5 + y 5 + z 5 = 235 , \begin{aligned} x + y + z & = & 5 \\ x^3 + y^3 + z^3 & = & -19 \\ x^5 + y^5 + z^5 & = & -235, \\ \end{aligned}

what is the value of x 7 + y 7 + z 7 x^7 + y^7 + z^7 ?


The answer is 509.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
May 8, 2014

If we let S n = x n + y n + z n S_n = x^n + y^n + z^n and suppose that S 2 = a S_2 = a , we have S 0 = 3 S_0=3 , S 1 = 5 S_1 = 5 , S 2 = a S_2 = a , S 3 = 19 S_3 = -19 and S 5 = 235 S_5 = -235 . Playing with elementary symmetric polynomials (expressing x + y + z x+y+z , x y + x z + y z xy+xz+yz and x y z xyz in terms of S 1 S_1 , S 2 S_2 and S 3 S_3 ) tells us that x , y , z x,y,z are the roots of the cubic X 3 5 X 2 + 1 2 ( 25 a ) X 1 2 ( 29 5 a ) = 0 X^3 - 5X^2 + \tfrac12(25-a)X - \tfrac12(29-5a) \; = \; 0 and hence S n + 3 5 S n + 2 + 1 2 ( 25 a ) S n + 1 1 2 ( 29 5 a ) S n = 0 S_{n+3} - 5S_{n+2} + \tfrac12(25-a)S_{n+1} - \tfrac12(29-5a)S_n \; = \; 0 for any integer n n . Then S 4 = 1 2 ( a 2 50 a 45 ) S_4 \; =\; \tfrac12(a^2 - 50a - 45) and the equation S 5 5 S 4 + 1 2 ( 25 a ) S 3 1 2 ( 29 5 a ) S 2 = 0 S_5 - 5S_4 + \tfrac12(25-a)S_3 - \tfrac12(29-5a)S_2 = 0 collapses to a linear equation for a a , which can be solved to obtain a = 3 a=3 . We now easily calculate S 6 = 285 S_6 = -285 and S 7 = 509 S_7 = 509 .

Pi Han Goh
Apr 29, 2014

Let X 3 + T X 2 + U X + V = 0 X^3 + TX^2 + UX + V = 0 be the cubic equation that has roots x , y , z x,y,z , then

By Vieta's formula, T = 5 T = -5

Apply the algebraic identity

x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y x z y z ) 19 + 3 V = ( x + y + z ) ( ( x + y + z ) 2 3 ( x y + x z + y z ) ) = 5 ( 5 2 3 U ) V = 5 U + 48 \begin{aligned} x^3 + y^3 + z^3 -3xyz & = & (x+y+z)(x^2+y^2+z^2 -xy-xz-yz) \\ -19 + 3V & = & (x+y+z) \left ( (x+y+z)^2 -3(xy+xz+yz) \right ) \\ & = & 5 ( 5^2 -3U ) \\ V & = & -5U + 48 \\ \end{aligned}

Consider expanding the following expression

( x 2 + y 2 + z 2 ) ( x 3 + y 3 + z 3 ) = ( x 5 + y 5 + z 5 ) + ( x y ) 2 ( x + y ) + ( x z ) 2 ( x + z ) + ( y z ) 2 ( y + z ) ( 25 2 U ) ( 19 ) = 235 + ( x y ) 2 ( 5 z ) + ( x z ) 2 ( 5 y ) + ( y z ) 2 ( 5 x ) ( 25 2 U ) ( 19 ) + 235 = 5 ( ( x y ) 2 + ( x z ) 2 + ( y z ) 2 ) x y z ( x y + x z + y z ) 38 U 240 = 5 ( ( x y + x z + y z ) 2 2 x y z ( x + y + z ) ) x y z ( x y + x z + y z ) = 5 ( U 2 2 ( V ) ( 5 ) ) ( V ) ( U ) = 5 U 2 + 50 V + U V = 5 U 2 + V ( 50 + U ) = 5 U 2 + ( 5 U + 48 ) ( U + 50 ) \begin{aligned} (x^2+y^2+z^2)(x^3 + y^3 + z^3) & = & (x^5 + y^5 + z^5) + (xy)^2 (x+y) + (xz)^2 (x+z) + (yz)^2 (y+z) \\ (25 - 2U)(-19) & = & -235 + (xy)^2 (5-z) + (xz)^2 (5-y) + (yz)^2 (5-x) \\ (25-2U)(-19)+235 & = & 5 \left ( (xy)^2 + (xz)^2 + (yz)^2 \right ) - xyz(xy + xz + yz) \\ 38U - 240 & = & 5 \left ( (xy+xz+yz)^2 - 2xyz(x+y+z) \right ) - xyz (xy + xz + yz ) \\ & = & 5 \left ( U^2 - 2(-V)(5) \right ) - (-V) (U ) \\ & = & 5U^2 + 50V + UV \\ & = & 5U^2 + V(50+ U) \\ & = & 5U^2 + (-5U+48)(U+50) \\ \end{aligned}

Solve for U U and V V simultaneously gives U = 11 , V = 7 U = 11, V = -7 . Thus the equation X 3 5 X 2 + 11 X 7 = 0 X^3 - 5X^2 + 11X - 7 = 0 has roots x , y , z x,y,z . By rational root theorem, ( X 1 ) (X-1) is a root of the equation. Factorize it gives ( X 1 ) ( X 2 4 X + 7 ) = 0 (X-1)(X^2 - 4X + 7) = 0 . Quadratic formula gives the other two roots 2 ± i 3 2 \pm i \sqrt3

Hence, the answer is 1 7 + ( 2 + i 3 ) 7 + ( 2 i 3 ) 7 = 509 1^7 + (2 + i \sqrt3 )^7 + (2 - i \sqrt3 )^7 = \boxed{509}

I used modified Newton's sums, but your strategy works just as well (it's really the same thing, just in disguise).

Finn Hulse - 7 years, 1 month ago

Log in to reply

Same here.

Sharky Kesa - 7 years, 1 month ago

Log in to reply

Yep..I used newton's identity too

Ayush Garg - 6 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...