Permutation and inequality

Algebra Level 4

Let a 1 , a 2 , a 3 , , a n a_1 , a_2 , a_3, \ldots ,a_n be positive real numbers. If b 1 , b 2 , b 3 b n b_1 , b_2 , b_3 \dots b_n is a permutation of a 1 , a 2 , a 3 a n a_1 , a_2 , a_3 \dots a_n then find the minimum value of the expression below:

r = 1 1234567890 a r b r \large \displaystyle \sum_{r=1}^{1234567890} \dfrac{a_r}{b_r}


The answer is 1234567890.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nihar Mahajan
Apr 19, 2015

Use AM - GM inequality for the n 'n' fractions ,

a 1 b 1 + a 2 b 2 + + a n b n n a 1 b 1 × a 2 b 2 × × a n b n n \dfrac{\dfrac{a_1}{b_1}+\dfrac{a_2}{b_2}+\dots +\dfrac{a_n}{b_n}}{n} \geq \sqrt[n]{\dfrac{a_1}{b_1}\times \dfrac{a_2}{b_2}\times \dots \times\dfrac{a_n}{b_n}}

Since b 1 , b 2 , b 3 b n b_1 , b_2 , b_3 \dots b_n is a permutation of a 1 , a 2 , a 3 a n a_1 , a_2 , a_3 \dots a_n , R . H . S R.H.S becomes 1 1 .

a 1 b 1 + a 2 b 2 + + a n b n n 1 n \dfrac{\dfrac{a_1}{b_1}+\dfrac{a_2}{b_2}+\dots +\dfrac{a_n}{b_n}}{n} \geq \sqrt[n]{1}

a 1 b 1 + a 2 b 2 + + a n b n n \dfrac{a_1}{b_1}+\dfrac{a_2}{b_2}+\dots +\dfrac{a_n}{b_n} \geq n

Since here n = 1234567890 n=1234567890 ,

r = 1 1234567890 a r b r 1234567890 \displaystyle \sum_{r=1}^{1234567890} \dfrac{a_r}{b_r} \geq \large \boxed{1234567890}

I just thought that the solution would be that each term were equal to one.

Guy Alves - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...