A boy has 3 library tickets and 8 books of his interest in the library. Of these 8, he does not want to borrow Mathematics Part II, unless Mathematics Part I is also borrowed. In how many ways can he choose the three books to be borrowed?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let us make the following cases: Case (i) Boy borrows Mathematics Part II, then he borrows Mathematics Part I also. So the number of possible choices, 8 - 2 = 6 out of which 1 is to be chosen as 2 are must. 6C1 = 6. Case (ii) Boy does not borrow Mathematics Part II, then the number of possible choices is 7C3 = 35. Hence, the total number of possible choices is 35 + 6 = 41.