Perpendicular tangents

Calculus Level 3

( α 1 , β 1 ) , ( α 2 , β 2 ) , , ( α n , β n ) (\alpha_1, \beta_1), \ (\alpha_2, \beta_2), \ \cdots \ , \ (\alpha_n, \beta_n) are the points on the curve S : y = sin ( x + y ) x [ 4 π , 4 π ] S \ : \ y=\sin (x+y) \ \ \forall x \in [-4\pi, \ 4\pi]
such that the tangents at these points to S S are perpendicular to the line l : ( 2 1 ) x + y = 0. l \ : \ (\sqrt {2}-1)x+y=0.

Find the value of k = 1 n α k β k . \left\lfloor \displaystyle\sum_{k=1}^{n} |\alpha_k|-|\beta_k|\right\rfloor.

Details and Assumptions

  • \lfloor{\cdots}\rfloor denotes the floor function (greatest integer function).

  • Even though in the problem, a plural form of points is given, there may only be one such point that exists.


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hasan Kassim
Aug 22, 2014

We start by our given that the tangents to S \displaystyle S at points ( α k , β k ) \displaystyle (\alpha_k,\beta_k) are perpendicular to line l : ( 2 1 ) x + y = 0 \displaystyle l : (\sqrt{2}-1)x+y=0

To find y \displaystyle y' , we proceed by implicit differentiation :

y = cos ( x + y ) ( 1 + y ) \displaystyle y'=\cos(x+y)(1+y')

Rearranging:

y = cos ( x + y ) 1 cos ( x + y ) \displaystyle y'=\frac{\cos(x+y)}{1-\cos(x+y)}

Equating this to the negative of the reciprocal of the slope of l \displaystyle l :

cos ( α k + β k ) 1 cos ( α k + β k ) = 1 2 1 \displaystyle \frac{\cos(\alpha_k+\beta_k)}{1-\cos(\alpha_k+\beta_k)}=\frac{1}{\sqrt{2}-1}

Rearranging our equation:

cos ( α k + β k ) = 2 2 \displaystyle \cos(\alpha_k+\beta_k)=\frac{\sqrt{2}}{2}

Therefore:

α k + β k = π 4 + 2 n π > ( 1 ) \displaystyle \alpha_k+\beta_k= \frac{\pi}{4} + 2n\pi ---> (1)

or,

α k + β k = π 4 + 2 n π > ( 2 ) \displaystyle \alpha_k+\beta_k= -\frac{\pi}{4} + 2n\pi ---> (2)

Working on ( 1 ) \displaystyle (1) :

We have β k = sin ( α k + β k ) = > β k = sin ( π 4 + 2 n π ) = 2 2 \displaystyle \beta_k=\sin(\alpha_k+\beta_k) => \beta_k=\sin( \frac{\pi}{4} + 2n\pi)=\frac{\sqrt{2}}{2}

Hence. α k = π 4 + 2 n π 2 2 \displaystyle \alpha_k=\frac{\pi}{4} + 2n\pi -\frac{\sqrt{2}}{2}

Using Trial and Error, we find out that for α k [ 4 π , 4 π ] , n = 2 , 1 , 0 , 1 \displaystyle \alpha_k \in [-4\pi,4\pi ] , n = -2,-1,0,1

Hence our solution pairs are :

( π 4 + 2 n π 2 2 , 2 2 ) \displaystyle (\frac{\pi}{4} + 2n\pi -\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}) for n = 2 , 1 , 0 , 1 n= -2,-1,0,1

Working on ( 2 ) \displaystyle (2) :

We have β k = sin ( α k + β k ) = > β k = sin ( π 4 + 2 n π ) = 2 2 \displaystyle \beta_k=\sin(\alpha_k+\beta_k) => \beta_k=\sin( -\frac{\pi}{4} + 2n\pi)=-\frac{\sqrt{2}}{2}

Hence. α k = π 4 + 2 n π + 2 2 \displaystyle \alpha_k=-\frac{\pi}{4} + 2n\pi +\frac{\sqrt{2}}{2}

Using Trial and Error, we find out that for α k [ 4 π , 4 π ] , n = 1 , 0 , 1 , 2 \displaystyle \alpha_k \in [-4\pi,4\pi ] , n = -1,0,1, 2

Hence our solution pairs are :

( π 4 + 2 n π + 2 2 , 2 2 ) \displaystyle (-\frac{\pi}{4} + 2n\pi +\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}) for n = 1 , 0 , 1 , 2 n= -1,0,1,2

Now nothing but substitution in our sum to get 44.608 \displaystyle 44.608 then 44 \displaystyle 44 is our desired solution.

Nice solution! +1

Pratik Shastri - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...