Perplexed

Algebra Level 3

Real numbers x x and y y satisfy the system of equations below.

{ 4 x y y 2 x 2 1 y 2 x 2 + 1 y 2 + 2 x y + x 2 = 2 3 x 2 + y 2 + 2 x 2 y 1 = 0 \large \begin{cases} \dfrac{\frac{4xy}{y^2 - x^2}}{\frac{1}{y^2 - x^2} + \frac{1}{y^2 + 2xy + x^2}} = 2 \\ 3x^2 + y^2 + 2x - 2y - 1 = 0 \end{cases}

Calculate 3 y ( x + y ) 1 3y(x + y) - 1 .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 11, 2018

Consider equation 1:

4 x y y 2 x 2 1 y 2 x 2 + 1 y 2 + 2 x y + x 2 = 2 Multiplied up and down by ( y 2 x 2 ) ( y 2 + 2 x y + x 2 ) 4 x y ( y 2 + 2 x y + x 2 ) 2 y 2 + 2 x y = 2 2 x ( y + x ) 2 y + x = 2 x 2 + x y = 1 \begin{aligned} \color{#3D99F6} \frac {\frac {4xy}{y^2-x^2}}{\frac 1{y^2-x^2}+\frac 1{y^2+2xy+x^2}} & = 2 & \small \color{#3D99F6} \text{Multiplied up and down by }(y^2-x^2)(y^2+2xy+x^2) \\ \color{#3D99F6} \frac {4xy(y^2+2xy+x^2)}{2y^2+2xy} & = 2 \\ \frac {2x(y+x)^2}{y+x} & = 2 \\ x^2+xy & = 1\end{aligned}

x 2 = 1 x y . . . ( 1 a ) \begin{aligned} \implies x^2 & = 1 - xy & ... (1a) \end{aligned}

Now consider equation 2:

3 x 2 + y 2 + 2 x 2 y 1 = 0 x 2 + 2 x 2 + y 2 + 2 x 2 y 1 = 0 ( 1 a ) : x 2 = 1 x y x 2 + 2 ( 1 x y ) + y 2 + 2 x 2 y 1 = 0 x 2 2 x y + y 2 + 2 x 2 y + 1 = 0 ( x y ) 2 + 2 ( x y ) + 1 = 0 It is a quadratic equation of ( x y ) . ( ( x y ) + 1 ) 2 = 0 \begin{aligned} 3x^2 + y^2 + 2x-2y - 1 & = 0 \\ x^2 +2{\color{#3D99F6}x^2} + y^2 + 2x-2y - 1 & = 0 & \small \color{#3D99F6} (1a): x^2 = 1-xy \\ x^2 +2{\color{#3D99F6}(1-xy)} + y^2 + 2x-2y - 1 & = 0 \\ x^2 - 2xy + y^2 + 2x-2y + 1 & = 0 \\ (x-y)^2 + 2(x-y) + 1 & = 0 & \small \color{#3D99F6} \text{It is a quadratic equation of }(x-y). \\ ((x-y)+1)^2 & = 0 \end{aligned}

y = x + 1 . . . ( 2 a ) \begin{aligned} \implies y & = x + 1 & ...(2a) \end{aligned}

Substituting (2a) in (1a):

x 2 = 1 x ( x + 1 ) 2 x 2 + x 1 = 0 ( 2 x 1 ) ( x + 1 ) = 0 \begin{aligned} x^2 & = 1 - x(x+1) \\ 2x^2 + x -1 & = 0 \\ (2x-1)(x+1) & = 0 \end{aligned}

{ x = 1 2 (2a): y = 1 2 + 1 = 3 2 3 y ( x + y ) 1 = 8 x = 1 (2a): y = 1 + 1 = 0 But (-1,0) does not satisfy equation (1). \implies \begin{cases} x = \frac 12 & \text{(2a): } y = \dfrac 12 + 1 = \dfrac 32 & \implies 3y(x+y) - 1 = \boxed{8} \\ x = -1 & \text{(2a): } y = -1 + 1 = 0 & \color{#D61F06} \small \text{But (-1,0) does not satisfy equation (1).} \end{cases}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...