Perturbation theory

The one-dimensional motion of a particle obeys the dimensionless differential equation x ¨ ( t ) + ε ( x ˙ ( t ) ) 2 = 1 \ddot x(t) + \varepsilon \cdot (\dot x(t))^2 = 1 where 0 < ε 1 0 < \varepsilon \ll 1 is an unknown, which describes the strength of the friction force. Initial conditions are x ( 0 ) = x ˙ ( 0 ) = 0 x(0) = \dot x(0)= 0 .

Without friction ( ε = 0 \varepsilon = 0 ) there is a movement with constant acceleration, so that the following solution results: x ( t ) = 0 t ( 0 t 1 d t ) d t = 1 2 t 2 x(t) = \int_0^t \left(\int_0^t 1 dt \right) dt = \frac{1}{2}t^2 The general solution can be written in the form x ( t ) = 1 2 t 2 + ε c 1 t 4 + ε 2 c 2 t 6 + x(t) = \frac{1}{2} t^2 + \varepsilon c_1 t^4 + \varepsilon^2 c_2 t^6 + \dots where the c k R c_k \in \mathbb{R} , k N k \in \mathbb{N} are unknown parameters .

What is the value of the ratio c 2 c 1 \dfrac{c_2}{c_1} ?

Take care of possible signs!


The answer is -0.266667.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Laszlo Mihaly
May 28, 2018

Take the expansion and calculate the first and second derivatives:

x = 1 2 t 2 + ε c 1 t 4 + ε 2 c 2 t 6 + . . . x=\frac{1}{2}t^2+\varepsilon c_1 t^4+ \varepsilon^2 c_2 t^6+...

x ˙ = t + 4 ε c 1 t 3 + 6 ε 2 c 2 t 5 + . . . \dot x=t+4\varepsilon c_1 t^3+6 \varepsilon^2 c_2 t^5+...

x ¨ = 1 + 12 ε c 1 t 2 + 30 ε 2 c 2 t 4 + . . . \ddot x=1+12 \varepsilon c_1 t^2+ 30 \varepsilon^2 c_2 t^4+...

We will insert this to the original equation of motion x ¨ + ε x ˙ 2 = 1 \ddot x+ \varepsilon \dot x^2=1 , and we will compare the coefficients of the t 2 t^2 and t 4 t^4 terms (as long as we are interested only in c 1 c_1 and c 2 c_2 , we do not need to go to higher orders). For that we need the t 2 t^2 and the t 4 t^4 terms in x ˙ 2 \dot x^2 ,

x ˙ 2 = ( t + 4 ε c 1 t 3 + 6 ε 2 c 2 t 5 + . . . ) 2 = t 2 + 8 ε c 1 t 4 + . . . \dot x^2=(t+4\varepsilon c_1 t^3+6 \varepsilon^2 c_2 t^5+...)^2= t^2+8\varepsilon c_1 t^4 + ...

Finally we get

( 1 + 12 ε c 1 t 2 + 30 ε 2 c 2 t 4 + . . . ) + ( ε t 2 + 8 ε 2 c 1 t 4 + . . . ) = 1 (1+12 \varepsilon c_1 t^2+ 30 \varepsilon^2 c_2 t^4+...)+ (\varepsilon t^2+8\varepsilon^2 c_1 t^4 + ...) =1

This is satisfied if 12 c 1 + 1 = 0 12 c_1+1 =0 and 30 c 2 + 8 c 1 = 0 30c_2+8c_1=0 . The second equation yields c 2 / c 1 = 4 / 15 c_2/c_1=-4/15 .

Markus Michelmann
May 27, 2018

We assume, that we can expand the solution as a power series for the parameter ε \varepsilon x ( t ) = x 0 ( t ) + ε x 1 ( t ) + ε 2 x 2 ( t ) + = k = 0 ε k x k ( t ) \begin{aligned} x(t) &= x_0(t) + \varepsilon \cdot x_1(t) + \varepsilon^2 \cdot x_2(t) + \dots \\ &= \sum_{k = 0}^\infty \varepsilon^k \cdot x_k(t) \end{aligned} where the x k ( t ) x_k(t) are functions, which are independant of ε \varepsilon . Since ε \varepsilon is small, we can get a suitable approximations for x ( t ) x(t) , if we evaluate a few partial sums.

Inserting the power series into the differential equation results k = 0 ε k x ¨ k + ε ( k = 0 ε k x ˙ k ) 2 = 1 k = 0 ε k x ¨ k + k = 1 ε k i + j = k 1 x ˙ i x ˙ j = 1 ( x ¨ 0 1 ) + k = 1 ε k ( x ¨ k + i + j = k 1 x ˙ i x ˙ j ) = 0 ( x ¨ 0 1 ) + ε ( x ¨ 1 + x ˙ 0 2 ) + ε 2 ( x ¨ 2 + 2 x ˙ 0 x ˙ 1 ) + + = 0 \begin{aligned} & & \sum_{k = 0}^\infty \varepsilon^k \cdot \ddot x_k + \varepsilon \left( \sum_{k = 0}^\infty \varepsilon^k \cdot \dot x_k \right)^2 &= 1 \\ \Rightarrow & & \sum_{k = 0}^\infty \varepsilon^k \cdot \ddot x_k + \sum_{k = 1}^\infty \varepsilon^k \cdot \sum_{i + j = k - 1} \dot x_i \dot x_j &= 1 \\ \Rightarrow & & (\ddot x_0 - 1) + \sum_{k = 1}^\infty \varepsilon^k \cdot \left(\ddot x_k + \sum_{i + j = k - 1} \dot x_i \dot x_j \right) &= 0 \\ \Rightarrow & & (\ddot x_0 - 1) + \varepsilon \cdot (\ddot x_1 + \dot x_0^2) + \varepsilon^2 \cdot (\ddot x_2 + 2 \dot x_0 \dot x_1) + \dots + &= 0 \end{aligned} Since this must valid for any ε \varepsilon , all expressions inside parentheses must be zero. Therefore, we get a sequence of differential equations x ¨ 0 1 = 0 x ¨ 1 + x ˙ 0 2 = 0 x ¨ 2 + 2 x ˙ 0 x ˙ 1 = 0 \begin{aligned} \ddot x_0 - 1 &= 0 \\ \ddot x_1 + \dot x_0^2 &= 0 \\ \ddot x_2 + 2 \dot x_0 \dot x_1 &= 0 \\ \vdots & \end{aligned} We get the solutions one by one through integration with initial conditions x k ( 0 ) = x ˙ k ( 0 ) = 0 x_k(0) = \dot x_k(0) = 0 x 0 = ( 1 d t ) d t = 1 2 t 2 x 1 = ( ( x ˙ 0 2 ) d t ) d t = ( t 2 d t ) d t = t 4 12 x 2 = ( ( 2 x ˙ 0 x ˙ 1 ) d t ) d t = ( 2 t 4 3 d t ) d t = t 6 45 \begin{aligned} x_0 &= \int \left(\int 1 dt \right) dt = \frac{1}{2} t^2 \\ x_1 &= \int \left(\int (-\dot x_0^2) dt \right) dt = - \int \left(\int t^2 dt \right) dt = - \frac{t^4}{12} \\ x_2 &= \int \left(\int (-2 \dot x_0 \dot x_1) dt \right) dt = \int \left(\int \frac{2 t^4}{3} dt \right) dt = \frac{t^6}{45} \end{aligned} The final result is of the form x ( t ) = 1 2 t 2 ε t 4 12 + ε 2 t 6 45 + x(t) = \frac{1}{2} t^2 - \varepsilon \frac{t^4}{12} + \varepsilon^2 \frac{t^6}{45} + \dots with the coefficients c 1 = 1 12 c_1 = -\dfrac{1}{12} and c 2 = 1 45 c_2 = \dfrac{1}{45} , so that c 2 c 1 = 12 45 = 4 15 = 0.2666 \dfrac{c_2}{c_1} = -\dfrac{12}{45} = -\dfrac{4}{15} = -0.2666\dots .

Disregard my previously posted comment

Michael Mendrin - 3 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...