This 4 5 ∘ sector of a circular pie with radius 2 is to be cut up in such a way that Person 1 eats the red part (Area 1), Person 2 eats the orange part (Area 2), and so on, where the length halves for each successive piece.
What is the area of the piece of pie that Person 2018 eats?
If your answer can be given as ( 2 c 2 a + b ) π , where a , b , c are integers, b is odd, and ∣ b ∣ ≤ 2 0 1 8 , enter the value of a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
T h e r a d i u s R n o f t h e n t h p i e c e i s i n G P . G P r a t i o = 1 / 2 a n d a = 1 . S o R n = 1 − 1 / 2 1 − ( 1 / 2 ) n . T o t a l a r e a c o v e r e d b y n t h p i e c e i s A n = 8 π ∗ R n 2 . ∴ n t h p e r s o n e a t s A n − A n − 1 = 8 π ∗ { ( 1 − 1 / 2 1 − ( 1 / 2 ) n ) 2 − ( 1 − 1 / 2 1 − ( 1 / 2 ) n − 1 ) 2 } O u r n = 2 0 1 8 . S o h e e a t s 8 π ∗ { ( 1 / 2 1 − 2 − 2 0 1 8 ) 2 − ( 1 / 2 1 − 2 − 2 0 1 7 ) 2 } = 2 π ∗ { ( 1 − 2 − 2 0 1 8 ) 2 − ( 1 − 2 − 2 0 1 7 ) 2 } = 2 π ∗ { ( − 2 − 2 0 1 8 + 2 − 2 0 1 7 ) ∗ ( 2 − 2 − 2 0 1 8 − 2 − 2 0 1 7 ) } = π ∗ { 2 − 2 0 1 9 ( − 1 + 2 ) ∗ ( 2 − 2 − 2 0 1 8 ( 1 + 2 ) ) } = π ∗ { 2 − 2 0 1 9 ∗ ( 2 − 3 ∗ 2 − 2 0 1 8 ) } = π ∗ 2 2 0 1 9 + 2 0 1 8 2 2 0 1 9 − 3 = π ∗ 2 c 2 a − b ∴ a + b + c = 2 0 1 9 − 3 + 4 0 3 7 = 6 0 5 3 .
Let the " distance " from the center of the pie eaten by the first n th persons be R n . Then:
R n = k = 1 ∑ n 2 k − 1 1 = k ∑ n − 1 2 k 1 = 1 − 2 1 1 − 2 n 1 = 2 n − 1 2 n − 1
Then the area of pie eaten by the first n th persons is A n = 8 π R n 2 and the area eaten by n th person is:
a n = A n − A n − 1 = 8 π ( R n 2 − R n − 1 2 ) = 8 π ( R n + R n − 1 ) ( R n − R n − 1 ) = 8 π ( 2 n − 1 2 n − 1 + 2 n − 2 2 n − 1 − 1 ) ( 2 n − 1 2 n − 1 − 2 n − 2 2 n − 1 − 1 ) = 8 π ( 2 n − 1 2 n + 1 − 3 ) ( 2 n − 1 1 ) = ( 2 2 n + 1 2 n + 1 − 3 ) π
Therefore, for n = 2 0 1 8 , a + b + c = ( 2 0 1 8 + 1 ) + ( − 3 ) + ( 2 × 2 0 1 8 + 1 ) = 6 0 5 3 .
Yes, good use of the difference of two squares. Just a note: you have used S n once and R n the rest of the time
Thank you.
Problem Loading...
Note Loading...
Set Loading...
Firstly, we need to find a formula for the length of the sector. We can observe that the length from the centre of the pie to the outer boundary of Area k , r k = 2 − 2 k − 1 1 since the total radius has length 2.
Now, Area n is equal to the total slice up to the outer boundary of Area n minus the total slice up to the outer boundary of Area n − 1 . Therefore, Area n = 8 1 × π × r n 2 − 8 1 × π × r n − 1 2 Area n = 8 π × ( r n 2 − r n − 1 2 ) Area n = 8 π × [ ( 2 − 2 ( n ) − 1 1 ) 2 − ( 2 − 2 ( n − 1 ) − 1 1 ) 2 ] Area n = 8 π × [ ( 2 − 2 1 − n ) 2 − ( 2 − 2 2 − n ) 2 ] Expanding and simplifying, we get that, Area n = 8 π × [ 2 2 − 2 n − 2 4 − 2 n + 2 4 − n − 2 3 − n ] Area n = 8 π × [ 2 2 − 2 n ( 1 − 2 2 ) + 2 3 − n ( 2 − 1 ) ] Area n = 8 π × [ 2 2 n − 2 − 3 + 2 n − 3 1 ] Area n = 8 π × [ 2 2 n − 2 − 3 + 2 2 n − 2 2 n + 1 ] Area n = 8 π × [ 2 2 n − 2 2 n + 1 − 3 ] Area n = [ 2 2 n + 1 2 n + 1 − 3 ] × π Hence, Area 2 0 1 8 = [ 2 4 0 3 7 2 2 0 1 9 − 3 ] × π This makes a + b + c = 2 0 1 9 − 3 + 4 0 3 7 = 6 0 5 3
Note: This value for a , b and c is unique. Since b is an odd integer, this means that the value of c must be 4 0 3 7 . Also, if a is either 2 0 1 8 or 2 0 2 0 (or any other numbers except 2 0 1 9 ), ∣ b ∣ > > 2 0 1 8