Petite Piece of Pie

Geometry Level 4

This 4 5 45 ^{\circ} sector of a circular pie with radius 2 is to be cut up in such a way that Person 1 eats the red part (Area 1), Person 2 eats the orange part (Area 2), and so on, where the length halves for each successive piece.

What is the area of the piece of pie that Person 2018 eats?

If your answer can be given as ( 2 a + b 2 c ) π , \left(\dfrac{2^a + b}{2^{c}} \right) \pi, where a , b , c a, b, c are integers, b b is odd, and b 2018 , |b| \le 2018, enter the value of a + b + c . a + b + c.


The answer is 6053.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Stephen Mellor
Jul 8, 2018

Firstly, we need to find a formula for the length of the sector. We can observe that the length from the centre of the pie to the outer boundary of Area k k , r k = 2 1 2 k 1 r_k\ = 2 - \dfrac{1}{2^{k-1}} since the total radius has length 2.


Now, Area n n is equal to the total slice up to the outer boundary of Area n n minus the total slice up to the outer boundary of Area n 1 n - 1 . Therefore, Area n = 1 8 × π × r n 2 1 8 × π × r n 1 2 \text{Area } n = \frac18 \times \pi \times r_n^2 - \frac18 \times \pi \times r_{n-1}^2 Area n = π 8 × ( r n 2 r n 1 2 ) \text{Area } n = \frac{\pi}{8} \times (r_n^2 - r_{n-1}^2) Area n = π 8 × [ ( 2 1 2 ( n ) 1 ) 2 ( 2 1 2 ( n 1 ) 1 ) 2 ] \text{Area } n = \frac{\pi}{8} \times \left[ \left( 2 - \dfrac{1}{2^{(n)-1}} \right)^2 - \left( 2 - \dfrac{1}{2^{(n-1)-1}} \right)^2 \right] Area n = π 8 × [ ( 2 2 1 n ) 2 ( 2 2 2 n ) 2 ] \text{Area } n = \frac{\pi}{8} \times \left[ \left( 2 - 2^{1-n} \right)^2 - \left( 2 - 2^{2-n} \right)^2 \right] Expanding and simplifying, we get that, Area n = π 8 × [ 2 2 2 n 2 4 2 n + 2 4 n 2 3 n ] \text{Area } n = \frac{\pi}{8} \times \left[ 2^{2-2n} - 2^{4-2n} + 2^{4-n} - 2^{3-n} \right] Area n = π 8 × [ 2 2 2 n ( 1 2 2 ) + 2 3 n ( 2 1 ) ] \text{Area } n = \frac{\pi}{8} \times \left[ 2^{2-2n}(1 - 2^2) + 2^{3-n}(2-1) \right] Area n = π 8 × [ 3 2 2 n 2 + 1 2 n 3 ] \text{Area } n = \frac{\pi}{8} \times \left[ \dfrac{-3}{2^{2n-2}} + \dfrac{1}{2^{n-3}} \right] Area n = π 8 × [ 3 2 2 n 2 + 2 n + 1 2 2 n 2 ] \text{Area } n = \frac{\pi}{8} \times \left[ \dfrac{-3}{2^{2n-2}} + \dfrac{2^{n+1}}{2^{2n-2}} \right] Area n = π 8 × [ 2 n + 1 3 2 2 n 2 ] \text{Area } n = \frac{\pi}{8} \times \left[ \dfrac{2^{n+1} - 3}{2^{2n-2}} \right] Area n = [ 2 n + 1 3 2 2 n + 1 ] × π \text{Area } n = \left[ \dfrac{2^{n+1} - 3}{2^{2n+1}} \right] \times \pi Hence, Area 2018 = [ 2 2019 3 2 4037 ] × π \text{Area } 2018 = \left[ \dfrac{2^{2019} - 3}{2^{4037}} \right] \times \pi This makes a + b + c = 2019 3 + 4037 = 6053 a + b + c = 2019 - 3 + 4037 = \boxed{6053}


Note: This value for a a , b b and c c is unique. Since b b is an odd integer, this means that the value of c c must be 4037 4037 . Also, if a a is either 2018 2018 or 2020 2020 (or any other numbers except 2019 2019 ), b > > 2018 |b| >> 2018

T h e r a d i u s R n o f t h e n t h p i e c e i s i n G P . G P r a t i o = 1 / 2 a n d a = 1. S o R n = 1 ( 1 / 2 ) n 1 1 / 2 . T o t a l a r e a c o v e r e d b y n t h p i e c e i s A n = π R n 2 8 . n t h p e r s o n e a t s A n A n 1 = π 8 { ( 1 ( 1 / 2 ) n 1 1 / 2 ) 2 ( 1 ( 1 / 2 ) n 1 1 1 / 2 ) 2 } O u r n = 2018. S o h e e a t s π 8 { ( 1 2 2018 1 / 2 ) 2 ( 1 2 2017 1 / 2 ) 2 } = π 2 { ( 1 2 2018 ) 2 ( 1 2 2017 ) 2 } = π 2 { ( 2 2018 + 2 2017 ) ( 2 2 2018 2 2017 ) } = π { 2 2019 ( 1 + 2 ) ( 2 2 2018 ( 1 + 2 ) ) } = π { 2 2019 ( 2 3 2 2018 ) } = π 2 2019 3 2 2019 + 2018 = π 2 a b 2 c a + b + c = 2019 3 + 4037 = 6053. The~ radius~ R_n ~of~the~n^{th}~piece~is ~in ~GP.\\ GP~ratio~=1/2~and~a=1.\\ So~R_n=\dfrac{1-(1/2)^n}{1-1/2}.\\ Total~area~covered ~by~n^{th}~piece~is ~A_n=\dfrac{\pi*R_n^2} 8.\\ \therefore~n^{th}~person~eats~A_n-A_{n-1}\\ =\dfrac \pi 8*\left \{\left ( \dfrac{1-(1/2)^n}{1-1/2} \right)^2 - \left (\dfrac{1-(1/2)^{n-1}}{1-1/2} \right )^2 \right \}\\ Our~n=2018.\\ So~he~eats~\dfrac \pi 8*\left \{\left ( \dfrac{1-2^{ - 2018}}{1/2} \right)^2 - \left (\dfrac{1-2^{-2017}}{1/2} \right )^2 \right \}\\ = \dfrac \pi 2*\left \{\left ( 1-2^{ - 2018} \right)^2 - \left (1-2^{-2017}\right )^2 \right \}\\ = \dfrac \pi 2*\left \{\left ( -2^{ - 2018}+2^{-2017} \right)* \left (2-2^{ - 2018}-2^{-2017}\right ) \right \}\\ = \pi *\left \{2^{ - 2019} ( - 1+2 )* \left (2-2^{ - 2018}(1+2)\right ) \right \}\\ = \pi*\left \{2^{ - 2019} * (2-3*2^{ - 2018} ) \right \}\\ = \pi*\dfrac{2^{2019}-3}{ 2^{2019+2018}} \\ =\pi*\dfrac{2^a-b}{ 2^c} \\ \therefore a+b+c=2019-3+4037=\huge \color{#D61F06}{6053}.

Niranjan Khanderia - 2 years, 10 months ago

Let the " distance " from the center of the pie eaten by the first n n th persons be R n R_n . Then:

R n = k = 1 n 1 2 k 1 = k n 1 1 2 k = 1 1 2 n 1 1 2 = 2 n 1 2 n 1 \begin{aligned} R_n & = \sum_{k=1}^n \frac 1{2^{k-1}} = \sum_k^{n-1} \frac 1{2^k} = \frac {1-\frac 1{2^n}}{1-\frac 12} = \frac {2^n-1}{2^{n-1}} \end{aligned}

Then the area of pie eaten by the first n n th persons is A n = π R n 2 8 A_n = \dfrac {\pi R_n^2}8 and the area eaten by n n th person is:

a n = A n A n 1 = π 8 ( R n 2 R n 1 2 ) = π 8 ( R n + R n 1 ) ( R n R n 1 ) = π 8 ( 2 n 1 2 n 1 + 2 n 1 1 2 n 2 ) ( 2 n 1 2 n 1 2 n 1 1 2 n 2 ) = π 8 ( 2 n + 1 3 2 n 1 ) ( 1 2 n 1 ) = ( 2 n + 1 3 2 2 n + 1 ) π \begin{aligned} a_n & = A_n - A_{n-1} \\ & = \frac \pi 8 \left(R_n^2 - R_{n-1}^2\right) \\ & = \frac \pi 8 \left(R_n + R_{n-1}\right) \left(R_n - R_{n-1}\right) \\ & = \frac \pi 8 \left(\frac {2^n-1}{2^{n-1}}+\frac {2^{n-1}-1}{2^{n-2}}\right) \left(\frac {2^n-1}{2^{n-1}}-\frac {2^{n-1}-1}{2^{n-2}}\right) \\ & = \frac \pi 8 \left(\frac {2^{n+1}-3}{2^{n-1}}\right) \left(\frac 1{2^{n-1}}\right) \\ & = \left(\frac {2^{n+1}-3}{2^{2n+1}} \right)\pi \end{aligned}

Therefore, for n = 2018 n=2018 , a + b + c = ( 2018 + 1 ) + ( 3 ) + ( 2 × 2018 + 1 ) = 6053 a+b+c = (2018+1) + (-3)+(2\times 2018+1) = \boxed{6053} .

Yes, good use of the difference of two squares. Just a note: you have used S n once and R n the rest of the time

Stephen Mellor - 2 years, 11 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 2 years, 11 months ago
Hana Wehbi
Jul 8, 2018

Nice problem

Thank you.

Stephen Mellor - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...