Phase Angle for Max Power

Two ideal AC voltage sources are connected to each other through a complex impedance, as shown in the diagram. What value of the left source phase angle ( δ ) (\delta) maximizes the active power consumed by the source on the right?

Give your answer in degrees, to 2 decimal places.


The answer is 87.14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 15, 2017

The current I I through the circuit is given by:

I = 1 δ 1 0 Z = cos δ + j sin δ 1 0.05 + j 1.00 = ( cos δ 1 + j sin δ ) ( 0.05 j 1.00 ) ( 0.05 + j 1.00 ) ( 0.05 j 1.00 ) = 0.05 ( cos δ 1 ) + sin δ + j ( 0.05 sin δ cos δ + 1 ) 1.0025 \begin{aligned} I & = \frac {1\angle \delta - 1\angle 0^\circ}{\vec Z} \\ & = \frac {\cos \delta + j \sin \delta - 1}{0.05+j1.00} \\ & = \frac {(\cos \delta - 1 + j \sin \delta)(0.05-j1.00)}{(0.05+j1.00)(0.05-j1.00)} \\ & = \frac {0.05(\cos \delta - 1)+\sin \delta + j(0.05\sin \delta - \cos \delta + 1)}{1.0025} \end{aligned}

The active power consumed by the source on the right is maximum when ( I ) \Re (I) is maximum. That is when 0.05 cos δ + sin δ 0.05\cos \delta+ \sin \delta is maximum.

f ( δ ) = 0.05 cos δ + sin δ ) f ( δ ) = 0 , 05 sin δ + cos δ Equating f ( δ ) = 0 tan δ = 1 0.05 = 20 δ 87.1 4 \begin{aligned} f(\delta) & = 0.05\cos \delta + \sin \delta) \\ f'(\delta) & = - 0,05 \sin \delta + \cos \delta & \small \color{#3D99F6} \text{Equating }f'(\delta) = 0 \\ \implies \tan \delta & = \frac 1{0.05} = 20 \\ \implies \delta & \approx 87.14^\circ \end{aligned}

Note that f ( 87.1 4 ) < 0 f''(87.14^\circ) < 0 . Therefore the active power consumed by the source on the right is maximum when δ 87.14 \delta \approx \boxed{87.14}^\circ .

Thanks for the solution. The result ends up being the same as the impedance angle. I thought that was interesting.

Steven Chase - 3 years, 8 months ago
Guilherme Niedu
Sep 12, 2017

Voltage on the impedance is the difference between them:

V = 1 δ 1 0 \large \displaystyle V = 1 \angle \delta - 1 \angle 0

V = [ cos ( δ ) 1 ] + j sin ( δ ) \color{#20A900} \boxed{ \large \displaystyle V = [\cos(\delta) - 1] + j \sin(\delta) }

Current on the impedance is the same current of the whole cicruit:

I = V 0.05 + j \large \displaystyle I = \frac{V}{0.05 + j}

I = [ 0.05 ( cos ( δ ) 1 ) + sin ( δ ) ] + j [ ( cos ( δ ) 1 ) sin ( δ ) ] 1.0025 \color{#20A900} \boxed{ \large \displaystyle I = \frac{[0.05(\cos(\delta) - 1) + \sin(\delta)] + j[(\cos(\delta) - 1) - \sin(\delta)]}{1.0025} }

Power on the right source is:

S = 1 0 I \large \displaystyle S = 1 \angle 0 \cdot I^*

S = [ 0.05 ( cos ( δ ) 1 ) + sin ( δ ) ] + j [ ( cos ( δ ) 1 ) sin ( δ ) ] 1.0025 \color{#20A900} \boxed{ \large \displaystyle S = \frac{[0.05(\cos(\delta) - 1) + \sin(\delta)] + j[(\cos(\delta) - 1) - \sin(\delta)]}{1.0025} }

Active power is:

P = ( S ) \large \displaystyle P = \Re (S)

P = 0.05 ( cos ( δ ) 1 ) + sin ( δ ) 1.0025 \color{#20A900} \boxed{ \large \displaystyle P = \frac{0.05(\cos(\delta) - 1) + \sin(\delta)}{1.0025} }

Differentiating P P with respect to δ \delta and making it equal to 0 0 :

d P d δ = 0.05 sin ( δ ) + cos ( δ ) 1.0025 = 0 \large \displaystyle \frac{dP}{d \delta} = \frac{-0.05 \sin(\delta) + \cos(\delta)}{1.0025} = 0

tan ( δ ) = 20 \large \displaystyle \tan(\delta) = 20

δ = tan 1 ( 20 ) \color{#20A900} \boxed{ \large \displaystyle \delta = \tan^{-1}(20)} or δ = tan 1 ( 20 ) + 18 0 o \color{#20A900} \boxed{ \large \displaystyle \delta = \tan^{-1}(20) + 180^o }

However, the second derivative of P P with respect to δ \delta :

d 2 P d δ 2 = 0.05 cos ( δ ) sin ( δ ) 1.0025 \large \displaystyle \frac{d^2 P}{d \delta^2} = \frac{-0.05 \cos(\delta) - \sin(\delta)}{1.0025}

Is negative on tan 1 ( 20 ) \tan^{-1}(20) (maximum) and positive on tan 1 ( 20 ) + 18 0 o \tan^{-1}(20) + 180^o (minimum)

Hence the solution is:

δ = tan 1 ( 20 ) 87.1 4 o \color{#3D99F6} \boxed{ \large \displaystyle \delta = \tan^{-1}(20) \approx 87.14^o}

Nice solution. It's the same as the impedance angle.

Steven Chase - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...