Phiiii-dom

Level pending

If ϕ = n + n + n + . . . \phi = \sqrt {n + \sqrt {n + \sqrt {n + ...}}} , where ϕ \phi represents 1 + 5 2 \frac {1 + \sqrt {5}}{2} , and n + n i 3 n n i \frac {n + ni}{3n - ni} is a complex number which can be solved to equal a + b i c \frac {a + bi}{c} , where i 2 i^2 equals 1 -1 and a a , b b and c c are positive integers, find the value of ( a + b + c ) c a + b (a + b + c)^{\frac {c}{a + b}} ?


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Jun 5, 2021

If we solve the nested radical for n n , we obtain:

ϕ = n + n + n + . . . ϕ 2 n = n + n + n + . . . ϕ 2 ϕ = n 3 + 5 2 1 + 5 2 = n n = 1. \phi = \sqrt{n+\sqrt{n+\sqrt{n+...}}} \Rightarrow \phi^{2} - n = \sqrt{n+\sqrt{n+\sqrt{n+...}}} \Rightarrow \phi^{2} - \phi = n \Rightarrow \frac{3+\sqrt{5}}{2} - \frac{1+\sqrt{5}}{2} = n \Rightarrow n = 1.

If z = n + n i 3 n n i \large z = \frac{n+ni}{3n-ni} , then z = 1 + i 3 i 3 + i 3 + i = 3 1 + i + 3 i 9 i 2 = 2 + 4 i 10 = 1 + 2 i 5 \large z = \frac{1+i}{3-i} \cdot \frac{3+i}{3+i} = \frac{3-1+i+3i}{9-i^2} = \frac{2+4i}{10} = \frac{1+2i}{5} . Thus a = 1 , b = 2 , c = 5 a=1, b =2, c=5 , and we end up with:

( a + b + c ) c / ( a + b ) = ( 1 + 2 + 5 ) 5 / ( 1 + 2 ) = ( 8 1 / 3 ) 5 = 2 5 = 32 . \large (a+b+c)^{c/(a+b)} = (1+2+5)^{5/(1+2)} = (8^{1/3})^5 = 2^5 = \boxed{32}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...