Let v ( t ) = ⎣ ⎡ x ( t ) y ( t ) z ( t ) ⎦ ⎤
If
d t d v ( t ) = A v ( t )
where
A = ⎣ ⎡ − 0 . 1 7 5 0 . 3 5 0 . 5 2 5 0 − 0 . 3 0 0 . 1 7 5 0 . 2 5 − 0 . 5 2 5 ⎦ ⎤
And v ( 0 ) = ⎣ ⎡ 1 2 4 ⎦ ⎤
What is t → ∞ lim x ( t ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Writing the equations in a non-matrix form gives:
x ˙ = A 1 x + B 1 y + C 1 z y ˙ = A 2 x + B 2 y + C 2 z z ˙ = A 3 x + B 3 y + C 3 z
Taking Laplace transform on both sides:
s X − x ( 0 ) = A 1 X + B 1 Y + C 1 Z s Y − y ( 0 ) = A 2 X + B 2 Y + C 2 Z s Z − z ( 0 ) = A 3 X + B 3 Y + C 3 Z
Solving for X (Using Wolfram-Alpha):
X = 4 0 s 2 + 2 8 s 4 0 s + 4 9
Now, Applying the final value theorem:
s → 0 lim s X ( s ) = t → ∞ lim x ( t ) ⟹ t → ∞ lim x ( t ) = s → 0 lim 4 0 s + 2 8 4 0 s + 4 9 ⟹ t → ∞ lim x ( t ) = 4 7
Problem Loading...
Note Loading...
Set Loading...
The matrix A has eigenvalues − 1 0 7 , − 1 0 3 and 0 , with corresponding eigenvectors ⎝ ⎛ 1 1 − 3 ⎠ ⎞ ⎝ ⎛ 0 1 0 ⎠ ⎞ ⎝ ⎛ 1 2 1 ⎠ ⎞ Thus e A t ⎝ ⎛ 1 1 − 3 ⎠ ⎞ = e − 1 0 7 t ⎝ ⎛ 1 1 − 3 ⎠ ⎞ e A t ⎝ ⎛ 0 1 0 ⎠ ⎞ = e − 1 0 3 t ⎝ ⎛ 0 1 0 ⎠ ⎞ e A t ⎝ ⎛ 1 2 1 ⎠ ⎞ = ⎝ ⎛ 1 2 1 ⎠ ⎞ Thus, if v ( 0 ) = u ⎝ ⎛ 1 1 − 3 ⎠ ⎞ + v ⎝ ⎛ 0 1 0 ⎠ ⎞ + w ⎝ ⎛ 1 2 1 ⎠ ⎞ then v ( t ) = e A t v ( 0 ) = u e − 1 0 7 t ⎝ ⎛ 1 1 − 3 ⎠ ⎞ + v e − 1 0 3 t ⎝ ⎛ 0 1 0 ⎠ ⎞ + w ⎝ ⎛ 1 2 1 ⎠ ⎞ and hence t → ∞ lim v ( t ) = w ⎝ ⎛ 1 2 1 ⎠ ⎞ so that t → ∞ lim x ( t ) = w In this case we have u = v = − 4 3 and w = 4 7 , so the desired answer is 4 7 .