Photoelectric Primes 2:The rise of fallen

Algebra Level 4

Shivamani thinks that he has found a quartic polynomial f ( x ) f(x) such that f ( n ) = n f\left( n \right) =n -th prime number. He found that

{ f ( 1 ) = 2 f ( 2 ) = 3 f ( 3 ) = 5 f ( 4 ) = 7 f ( 5 ) = 11 \begin{cases} {f(1) = 2} \\ {f(2) = 3 } \\ {f(3) = 5} \\ { f(4) = 7} \\ f(5) = 11\end{cases}

Help him find the value of f ( 6 ) f(6) .

This problem is original.


The answer is 22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mathh Mathh
Aug 9, 2015

Apply the Method of Differences .

n f ( n ) D 1 D 2 D 3 D 4 1 2 1 1 1 3 2 3 2 0 2 3 5 2 2 4 7 4 5 11 6 \begin{array}{l|c|r}n& f(n)& D_1& D_2& D_3& D_4\\\hline 1& 2& 1& 1& -1& 3\\\hline 2& 3& 2& 0& 2\\\hline 3& 5& 2& 2\\\hline 4& 7& 4\\\hline 5& 11\\\hline 6\end{array}

n f ( n ) D 1 D 2 D 3 D 4 1 2 1 1 1 3 2 3 2 0 2 3 3 5 2 2 4 7 4 5 11 6 \begin{array}{l|c|r}n& f(n)& D_1& D_2& D_3& D_4\\\hline 1& 2& 1& 1& -1& 3\\\hline 2& 3& 2& 0& 2& 3\\\hline 3& 5& 2& 2\\\hline 4& 7& 4\\\hline 5& 11\\\hline 6\end{array}

n f ( n ) D 1 D 2 D 3 D 4 1 2 1 1 1 3 2 3 2 0 2 3 3 5 2 2 5 4 7 4 7 5 11 11 6 22 \begin{array}{l|c|r}n& f(n)& D_1& D_2& D_3& D_4\\\hline 1& 2& 1& 1& -1& 3\\\hline 2& 3& 2& 0& 2& 3\\\hline 3& 5& 2& 2& 5\\\hline 4& 7& 4& 7\\\hline 5& 11& 11\\\hline 6& \boxed{22}\end{array}

Alex Delhumeau
Jul 10, 2015

A quartic polynomial is of the form a x 4 + b x 3 + c x 2 + d x + e = f ( x ) ax^4+bx^3+cx^2+dx+e=f(x) . If we substitute in the given values, a linear system results: { a + b + c + d + e = 2 16 a + 8 b + 4 c + 2 d + e = 3 81 a + 27 b + 9 c + 3 d + e = 5 256 a + 64 b + 16 c + 4 d + e = 7 625 a + 125 b + 25 c + 5 d + e = 11 \begin{cases} {a+b+c+d+e = 2} \\ {16a+8b+4c+2d+e = 3} \\ {81a+27b+9c+3d+e = 5} \\ {256a+64b+16c+4d+e = 7} \\ {625a+125b+25c+5d+e = 11} \end{cases}

Put into 5 x 6 5\text{x}6 matrix form, this system is written as [ 1 1 1 1 1 2 16 8 4 2 1 3 81 27 9 3 1 5 256 64 16 4 1 7 625 125 25 5 1 11 ] \left[ \begin{array}{cccccc} 1 & 1 & 1 & 1 & 1 & 2 \\ 16 & 8 & 4 & 2 & 1 & 3 \\ 81 & 27 & 9 & 3 & 1 & 5 \\ 256 & 64 & 16 & 4 & 1 & 7 \\ 625 & 125 & 25 & 5 & 1 & 11 \end{array} \right]

and reduces to [ 1 0 0 0 0 0.125 0 1 0 0 0 1.41 6 0 0 1 0 0 5.875 0 0 0 1 0 8.58 3 0 0 0 0 1 6 ] \left[ \begin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0.125 \\ 0 & 1 & 0 & 0 & 0 & -1.41\overline{6} \\ 0 & 0 & 1 & 0 & 0 & 5.875 \\ 0 & 0 & 0 & 1 & 0 & -8.58\overline{3} \\ 0 & 0 & 0 & 0 & 1 & 6 \end{array} \right]

0.125 6 4 1.41 6 6 3 + 5.875 6 2 8.58 3 6 + 6 = 22 0.125\cdot6^4-1.41\overline{6}\cdot6^3+5.875\cdot6^2-8.58\overline{3}\cdot6+6=\boxed{22}

A simple application of linear algebra.

We can do it easily by Method of differences!! BTW yours is also good.

shivamani patil - 5 years, 11 months ago

Log in to reply

Method of differences works as well indeed.

Alex Delhumeau - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...