Physics

Algebra Level 2

A car moves from A to B with speed 20 km/hr and back to A with speed 30 km/hr. The average speed during the whole journey is:

26km/hr 20km/hr 24km/hr 25km/hr

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

No need for calculations, to find the average of two numbers ( ( a b ) / ( a + b ) ) 2 ((a*b)/(a+b))*2 ( ( 20 30 ) / ( 20 + 30 ) ) 2 ((20*30)/(20+30))*2 =24km/hr

Anoir Trabelsi
Jun 3, 2014

W e k n o w t h a t t = d v l e t s c a l l t 1 t h e t i m e t h a t t h e c a r t a k e s t o g o f r o m A t o B t h e n t 1 = d 20 . S i m i l a r l y , t 2 = d 30 . l e t s c a l l v t h e a v e r g e v e l o c i t y . S i n c e t h e t o t a l t i m e n e e d s t o b e t h e s a m e t h e n : d 20 + d 30 = 2 d v S o : 50 d 600 = 2 d v v = 1200 d 50 d f i n a l l y v = 24 k m / h v = 24 k m / h We\quad know\quad that\quad t\quad =\quad \frac { d }{ v } \\ let's\quad call{ { \quad t }_{ 1 } }\quad the\quad time\quad that\quad the\quad car\quad takes\quad \quad to\quad go\quad from\quad A\quad to\quad B\quad \\ then\quad \\ { _{ }{ t }_{ 1\quad } }=\quad \frac { d }{ 20 } \quad .\quad Similarly,\quad { _{ }{ t }_{ 2 } }\quad =\quad \frac { d }{ 30 } .\quad \\ let's\quad call\quad v\quad the\quad averge\quad velocity\quad .\quad Since\quad the\quad total\quad time\quad needs\quad to\\ be\quad the\quad same\quad then\quad :\\ \frac { d }{ 20 } \quad +\quad \frac { d }{ 30 } \quad =\quad \frac { 2d }{ v } \\ \\ So\quad :\quad \frac { 50d }{ 600 } =\quad \frac { 2d }{ v } \\ \\ v\quad =\quad \frac { 1200d }{ 50d } \\ finally\quad v\quad =\quad 24km/h\\ \\ \therefore \quad \boxed { v\quad =\quad 24\quad km/h }

But how we can have this idea??

Meryem Benyoussef - 7 years ago

Log in to reply

You can refer my solution.

Saurabh Mallik - 6 years, 12 months ago

You know some guys will have this mistake: They thought the answer was 20 + 30 2 = 25 \frac { 20+30 }{ 2 } =25 km/h. But they were all wrong because the average speed is T h e t o t a l d i s t a n c e T h e t o t a l t i m e \frac { The\quad total\quad distance }{ The\quad total\quad time } . So using Trabelsi's solution is right!

Dang Anh Tu - 7 years ago

Log in to reply

hie i agree i was a fool when i started learning this.

Mardokay Mosazghi - 6 years, 12 months ago

V = d t V=\dfrac{d}{t} where V = s p e e d , d = d i s t a n c e , t = t i m e V=speed, d=distance, t=time

a v e . s p e e d = t o t a l d i s t a n c e t o t a l t i m e ave.~speed=\dfrac{total~distance}{total~time}

d 1 = 20 t 1 d_1=20t_1 and d 2 = 30 t 2 d_2=30t_2

but d 1 = d 2 d_1=d_2 ,

20 t 1 = 30 t 2 20t_1=30t_2 \implies t 1 = 3 2 t 2 t_1=\dfrac{3}{2}t_2

Substituting, we have

a v e . s p e e d = 20 t 1 + 30 t 2 t 1 + t 2 = 20 ( 3 2 ) t 2 + 30 t 2 3 2 t 2 + t 2 = 24 k p h ave.~speed=\dfrac{20t_1+30t_2}{t_1+t_2}=\dfrac{20\left(\dfrac{3}{2}\right)t_2+30t_2}{\dfrac{3}{2}t_2+t_2}=24~kph

Saurabh Mallik
Jun 14, 2014

Let: Distance = x =x

1 s t 1^{st} case:

Distance = x =x

Speed = 20 k m / h r =20km/hr

Time = x 20 =\frac{x}{20}

2 n d 2^{nd} case:

Distance = x =x

Speed = 30 k m / h r =30km/hr

Time = x 30 =\frac{x}{30}

Total Distance = x + x = 2 x =x+x=2x

Total Time = x 20 + x 30 = 5 x 60 = x 12 =\frac{x}{20}+\frac{x}{30}=\frac{5x}{60}=\frac{x}{12}

Average Speed = 2 x x 12 = \frac{2x}{\frac{x}{12}}

= 2 x × 12 x = 2 × 12 = 24 k m / h r =2x\times\frac{12}{x}=2\times12=24km/hr

Thus, the answer is: Average Speed = 24 k m / h r = \boxed{24km/hr}

Punithan Mech
Jun 8, 2014

Formula ( 2 xy) / ( x + y)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...