Physix & Maths

Calculus Level 5

Two differential equations;

f ( x ) = f ( x ) f 2 ( x ) + g 2 ( x ) f'(x)= -\frac{f(x)}{\sqrt{f^2(x) +g^2(x)}} .

g ( x ) = 1 g ( x ) ( f 2 ( x ) + g 2 ( x ) g'(x)= 1-\frac{g(x)}{\sqrt{(f^2(x) +g^2(x)}} .

if g ( 0 ) = 0 g(0)=0 and f ( 0 ) = 1000 f(0)=1000 .

when ψ \psi \rightarrow ∞ f ( ψ ) = 0 f(\psi)=0

What's g ( ψ ) g(\psi) ?

Moustafa could solve it! like!


The answer is 500.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Dhiraj Agarwalla
Dec 15, 2015

Multiplying f ( x ) f(x) and g ( x ) g(x) to differential equations f ( x ) = f ( x ) f 2 ( x ) + g 2 ( x ) f'(x)=\frac{-f(x)}{\sqrt{f^{2}(x)+g^{2}(x)}} and g ( x ) = 1 g ( x ) f 2 ( x ) + g 2 ( x ) g(x)=1-\frac{g(x)}{\sqrt{f^{2}(x)+g^{2}(x)}} respectively.

Now adding both the equations we get f ( x ) f ( x ) + g ( x ) g ( x ) = g ( x ) f 2 ( x ) + g 2 ( x ) f 2 ( x ) + g 2 ( x ) f(x)f'(x)+g(x)g'(x)=g(x)-\frac{f^{2}(x)+g^{2}(x)}{\sqrt{f^{2}(x)+g^{2}(x)}}

Simplifying it we get f ( x ) f ( x ) + g ( x ) g ( x ) = g ( x ) f 2 ( x ) + g 2 ( x ) f(x)f'(x)+g(x)g'(x)=g(x)-\sqrt{f^{2}(x)+g^{2}(x)}

Dividing both side by f 2 ( x ) + g 2 ( x ) \sqrt{f^{2}(x)+g^{2}(x)} we get f ( x ) f ( x ) + g ( x ) g ( x ) f 2 ( x ) + g 2 ( x ) = ( 1 g ( x ) f 2 ( x ) + g 2 ( x ) ) \frac{f(x)f'(x)+g(x)g'(x)}{\sqrt{f^{2}(x)+g^2(x)}}=-(1-\frac{g(x)}{\sqrt{f^{2}(x)+g^{2}(x)}})

Substituting g ( x ) g'(x) in the above equation and integrating both sides we get f 2 ( x ) + g 2 ( x ) = c g ( x ) \sqrt{f^{2}(x)+g^{2}(x)}=c-g(x) where c c is a constant.

Now putting x = 0 x=0 in the above equation we get the value of c c . Then putting ( ψ ) (\psi\rightarrow ∞) in the above equation we get the value of g ( ψ ) g(\psi) which is equal to 500 \boxed{500}

Good Solution

jafar badour - 5 years, 5 months ago

Log in to reply

Thank you :)

dhiraj agarwalla - 5 years, 5 months ago
Jafar Badour
Oct 9, 2015

g ( x ) f ( x ) = g ( x ) f 2 ( x ) + g 2 ( x ) f ( x ) \frac{g'(x)}{f'(x)}=\frac{g(x)-\sqrt{f^2(x) +g^2(x)}}{f(x)}

d g ( x ) d f ( x ) = g ( x ) f 2 ( x ) + g 2 ( x ) f ( x ) \frac{dg(x)}{df(x)}=\frac{g(x)-\sqrt{f^2(x) +g^2(x)}}{f(x)}

using u = g ( x ) f ( x ) u=\frac{g(x)}{f(x)} so

d g ( x ) = u d f ( x ) + f ( x ) d u dg(x)=udf(x)+f(x)du

when you separate yields:

d f ( x ) f ( x ) + d u u 2 + 1 = 0 \frac{df(x)}{f(x)}+\frac{du}{\sqrt{u^2 +1}}=0

by integrating we yield that:

l n f ( x ) + l n u + u 2 + 1 = C 1 ln|f(x)| +ln|u+\sqrt{u^2 +1}|=C_1

so g ( x ) + f 2 ( x ) + g 2 ( x ) = e 1 C g(x)+\sqrt{f^2(x) +g^2(x)} =e^C_1

while g ( 0 ) = 0 g(0)=0 and f ( 0 ) = 1000 f(0)=1000 hence e 1 C = 1000 e^C_1 =1000

when s s\rightarrow ∞

g ( s ) + f 2 ( s ) + g 2 ( s ) = 1000 g(s)+\sqrt{f^2(s) +g^2(s)} =1000

while f ( s ) = 0 f(s)=0 when S S\rightarrow ∞

g ( s ) + 0 + g 2 ( s ) = 1000 g ( s ) = 1000 2 = 500 g(s)+\sqrt{0+g^2(s)}=1000 \rightarrow g(s)=\frac{1000}{2} =500 .

انت بتاكلو

Hussein Younes - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...