Pi and e are fine together

Calculus Level 5

Define the sequence x 1 : = π + 1 , x n + 1 : = π n + n x n , for n 1. x_1:=\pi+1,\quad x_{n+1}:=\pi^n+nx_n,\quad\text{for }n\geq1. Then we have that n = 1 ( 1 π n x n + 1 ) = 1 + π a + b π + e c π \prod_{n=1}^\infty\left(1-\frac{\pi^n}{x_{n+1}}\right)=\frac{1+\pi}{a+b\pi+e^{c\pi}}

for some integers a , b a,b and c c . Find ( a + b + c ) a + b + c . (a+b+c)^{a+b+c}.


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 17, 2016

Working through the first few x n x_n , we find that x n = ( n 1 ) ! π + ( n 1 ) ! k = 0 n 1 π k k ! \displaystyle x_n = (n-1)!\pi + (n-1)!\sum_{k=0}^{n-1} \frac {\pi^k}{k!} (see Note ). Let us prove it by induction that the claim is true for all n 1 n \ge 1 .

  1. For n = 1 n = 1 , x 1 = 0 ! π + π 0 0 ! = π + 1 x_1 = 0!\pi + \dfrac {\pi^0}{0!} = \pi + 1 as given. Therefore, the claim is true for n = 1 n=1 .

  2. Assume that the claim is true for n n , then we have:

x n + 1 = π n + n x n = π n + n ( ( n 1 ) ! π + ( n 1 ) ! k = 0 n 1 π k k ! ) = n ! π + n ! k = 0 n 1 π k k ! + π n = n ! π + n ! k = 0 n π k k ! x n + 1 = ( n + 1 1 ) ! π + n ! k = 0 ( n + 1 1 ) π k k ! \begin{aligned} \quad \quad \quad x_{n+1} & = \pi^n + nx_n \\ & = \pi^n + n\left((n-1)!\pi + (n-1)!\sum_{k=0}^{n-1} \frac {\pi^k}{k!}\right) \\ & = n!\pi + n!\sum_{k=0}^{n-1} \frac {\pi^k}{k!} + \pi^n \\ & = n!\pi + n!\sum_{k=0}^{n} \frac {\pi^k}{k!} \\ \implies x_{\color{#3D99F6}{n+1}} & = (\color{#3D99F6}{n+1}-1)!\pi + n!\sum_{k=0}^{(\color{#3D99F6}{n+1}-1)} \frac {\pi^k}{k!} \end{aligned}

\quad \quad The claim is also true for n + 1 n+1 and hence true for all n 1 n\ge 1 .

Now, we have:

P = lim m n = 1 m ( 1 π n x n + 1 ) As x n + 1 = π n + n x n = lim m n = 1 m n x n x n + 1 = lim m n = 1 m n ( ( n 1 ) ! π + ( n 1 ) ! k = 0 n = 1 π k k ! ) n ! π + n ! k = 0 n π k k ! = lim m n = 1 m π + k = 0 n 1 π k k ! π + k = 0 n π k k ! = lim m n = 1 m ( π + k = 0 n 1 π k k ! ) n = 1 m ( π + k = 0 n π k k ! ) = lim m ( π + π 0 0 ! ) n = 1 m 1 ( π + k = 0 n π k k ! ) n = 1 m ( π + k = 0 n π k k ! ) = lim m π + 1 π + k = 0 m π k k ! = π + 1 π + e π \begin{aligned} P & = \lim_{m \to \infty} \prod_{n=1}^m \left(1 - \frac {\pi^n}{x_{n+1}}\right) & \small \color{#3D99F6}{\text{As }x_{n+1}=\pi^n + nx_n} \\ & = \lim_{m \to \infty} \prod_{n=1}^m \frac {nx_n}{x_{n+1}} \\ & = \lim_{m \to \infty} \prod_{n=1}^m \frac {n\left((n-1)!\pi + (n-1)!\sum_{k=0}^{n=1} \frac {\pi^k}{k!}\right)}{n!\pi + n!\sum_{k=0}^{n} \frac {\pi^k}{k!}} \\ & = \lim_{m \to \infty} \prod_{n=1}^m \frac {\pi + \sum_{k=0}^{n-1} \frac {\pi^k}{k!}}{\pi + \sum_{k=0}^{n} \frac {\pi^k}{k!}} \\ & = \lim_{m \to \infty} \frac {\prod\color{#D61F06}{_{n=1}^m} \left(\pi + \sum_{k=0}^{\color{#D61F06}{n-1}} \frac {\pi^k}{k!}\right)}{\prod_{n=1}^m \left(\pi + \sum_{k=0}^{n} \frac {\pi^k}{k!}\right)} \\ & = \lim_{m \to \infty} \frac {\left(\pi + \frac {\pi^0}{0!}\right) \prod\color{#D61F06}{_{n=1}^{m-1}} \left(\pi + \sum_{k=0}^{\color{#D61F06}{n}} \frac {\pi^k}{k!}\right)}{\prod_{n=1}^m \left(\pi + \sum_{k=0}^{n} \frac {\pi^k}{k!}\right)} \\ & = \lim_{m \to \infty} \frac {\pi + 1}{\pi + \sum_{k=0}^{\color{#D61F06}{m}} \frac {\pi^k}{k!}} \\ & = \frac {\pi + 1}{\pi + e^\pi} \end{aligned}

( a + b + c ) a + b + c = ( 0 + 1 + 1 ) 0 + 1 + 1 = 4 \implies (a + b + c)^{a+b+c} = (0+1+1)^{0+1+1} = \boxed{4}


Note:

\(\begin{array} {} a_1 = \pi + 1 \\ a_2 = \pi + \pi + 1 = 2\pi + 1 \\ a_3 = \pi^2 + 4\pi + 2 \\ a_4 = \pi^3 + 3\pi^2 + 12\pi + 6 \\ a_5 = \pi^4 + 4\pi^3 + 12\pi^2 + 48\pi + 24 \\ a_6 = \pi^5 + 5\pi^4 + 20\pi^3 + 60\pi^2 + 240\pi + 120 \\ ... \end{array} \)

a n = π n 1 + ( n 1 ) ! ( n 2 ) ! π n 2 + ( n 1 ) ! ( n 3 ) ! π n 3 + . . . + ( n 1 ) ! 2 ! π 2 + 2 ( n 1 ) ! π + ( n 1 ) ! = ( n 1 ) ! ( n 1 ) ! π n 1 + ( n 1 ) ! ( n 2 ) ! π n 2 + ( n 1 ) ! ( n 3 ) ! π n 3 + . . . + ( n 1 ) ! 2 ! π 2 + ( n 1 ) ! 1 ! π + ( n 1 ) ! 0 ! + ( n 1 ) ! π a n = ( n 1 ) ! π + ( n 1 ) ! k = 0 n 1 π k k ! \begin{aligned} \implies \ a_n & = \pi^{n-1} + \frac {(n-1)!}{(n-2)!}\pi^{n-2} + \frac {(n-1)!}{(n-3)!}\pi^{n-3} + ... + \frac {(n-1)!}{2!} \pi^2 + \color{#3D99F6}{2(n-1)! \pi} + (n-1)! \\ & = \frac {(n-1)!}{(n-1)!} \pi^{n-1} + \frac {(n-1)!}{(n-2)!}\pi^{n-2} + \frac {(n-1)!}{(n-3)!}\pi^{n-3} + ... + \frac {(n-1)!}{2!} \pi^2 + \color{#3D99F6}{\frac {(n-1)!}{1!}\pi} + \frac{(n-1)!}{0!} + \color{#3D99F6}{(n-1)!\pi} \\ \implies a_n & = (n-1)!\pi + (n-1)!\sum_{k=0}^{n-1} \frac {\pi^k}{k!} \end{aligned}

sir can you elaborate more on how did you went on to find the value of x n {x_n}

space sizzlers - 4 years, 9 months ago

Log in to reply

You have to work up to x 6 x_6 to see the general formula.

\(\begin{array} {} a_1 = \pi + 1 \\ a_2 = \pi + \pi + 1 = 2\pi + 1 \\ a_3 = \pi^2 + 4\pi + 2 \\ a_4 = \pi^3 + 3\pi^2 + 12\pi + 6 \\ a_5 = \pi^4 + 4\pi^3 + 12\pi^2 + 48\pi + 24 \\ a_6 = \pi^5 + 5\pi^4 + 20\pi^3 + 60\pi^2 + 240\pi + 120 \\ ... \end{array} \)

a n = π n 1 + ( n 1 ) ! ( n 2 ) ! π n 2 + ( n 1 ) ! ( n 3 ) ! π n 3 + . . . + ( n 1 ) ! 2 ! π 2 + 2 ( n 1 ) ! π + ( n 1 ) ! = ( n 1 ) ! ( n 1 ) ! π n 1 + ( n 1 ) ! ( n 2 ) ! π n 2 + ( n 1 ) ! ( n 3 ) ! π n 3 + . . . + ( n 1 ) ! 2 ! π 2 + ( n 1 ) ! 1 ! π + ( n 1 ) ! 0 ! + ( n 1 ) ! π a n = ( n 1 ) ! π + ( n 1 ) ! k = 0 n 1 π k k ! \begin{aligned} \implies \ a_n & = \pi^{n-1} + \frac {(n-1)!}{(n-2)!}\pi^{n-2} + \frac {(n-1)!}{(n-3)!}\pi^{n-3} + ... + \frac {(n-1)!}{2!} \pi^2 + \color{#3D99F6}{2(n-1)! \pi} + (n-1)! \\ & = \frac {(n-1)!}{(n-1)!} \pi^{n-1} + \frac {(n-1)!}{(n-2)!}\pi^{n-2} + \frac {(n-1)!}{(n-3)!}\pi^{n-3} + ... + \frac {(n-1)!}{2!} \pi^2 + \color{#3D99F6}{\frac {(n-1)!}{1!}\pi} + \frac{(n-1)!}{0!} + \color{#3D99F6}{(n-1)!\pi} \\ \implies a_n & = (n-1)!\pi + (n-1)!\sum_{k=0}^{n-1} \frac {\pi^k}{k!} \end{aligned}

Chew-Seong Cheong - 4 years, 9 months ago

Log in to reply

Wow great insight to the problem , thank you for help sir

space sizzlers - 4 years, 9 months ago

You can also telescope the recurrence to arrive at the summation.

Ishan Singh - 4 years, 9 months ago

i knew this all but not pi^k\k! summation ? how to calculate that ?

A Former Brilliant Member - 4 years, 9 months ago

Log in to reply

The Maclaurin series of e x = k = 0 x k k ! e^x = \displaystyle \sum_{k=0}^\infty \frac {x^k}{k!} .

Chew-Seong Cheong - 4 years, 9 months ago

Log in to reply

oh boy! just missed beacuse of it. thank you @Chew-Seong Cheong

A Former Brilliant Member - 4 years, 9 months ago

n = 1 k ( 1 π n x n + 1 ) = n = 1 k ( n x n x n + 1 ) = n ! × x 1 x k + 1 \displaystyle \prod _{ n=1 }^{ k }{ \left( 1-\frac { { \pi }^{ n } }{ { x }_{ n+1 } } \right) } =\quad \prod _{ n=1 }^{ k }{ \left( \frac { n{ x }_{ n } }{ { x }_{ n+1 } } \right) } =\frac { n!\times { x }_{ 1 } }{ { x }_{ k+1 } }

x k + 1 = π k + k x k = π k + k π k 1 + k ( k 1 ) x k 1 = . . . = n = 2 k n ! π k k ! + n ! x 2 = n = 2 k n ! π k k ! + n ! π + n ! x 1 = n = 2 k n ! π k k ! + n ! π + n ! π + n ! = n = 0 k n ! π k k ! + n ! π \displaystyle { x }_{ k+1 }={ \pi }^{ k }+k{ x }_{ k }={ \pi }^{ k }+{ k\cdot \pi }^{ k-1 }+k\cdot (k-1){ \cdot x }_{ k-1 }=...=\sum _{ n=2 }^{ k }{ \frac { n!\cdot { \pi }^{ k } }{ k! } } +n!\cdot { x }_{ 2 }=\sum _{ n=2 }^{ k }{ \frac { n!\cdot { \pi }^{ k } }{ k! } } +n!\cdot \pi +n!\cdot { x }_{ 1 }=\sum _{ n=2 }^{ k }{ \frac { n!\cdot { \pi }^{ k } }{ k! } } +n!\cdot \pi +n!\cdot \pi +n!=\sum _{ n=0 }^{ k }{ \frac { n!\cdot { \pi }^{ k } }{ k! } } +n!\cdot \pi

lim k k ! ( 1 + π ) x k + 1 = lim k k ! ( 1 + π ) k ! ( 0 k π k k ! + π ) = lim k ( 1 + π ) 0 k π k k ! + π = 1 + π lim k 0 k π k k ! + π = 1 + π π + e π \displaystyle \lim _{ k\rightarrow \infty }{ \dfrac { k!\cdot (1+\pi ) }{ { x }_{ k+1 } } } =\lim _{ k\rightarrow \infty }{ \dfrac { k!\cdot (1+\pi ) }{ k!\cdot (\sum _{ 0 }^{ k }{ \dfrac { { \pi }^{ k } }{ k! } } +\pi ) } } =\lim _{ k\rightarrow \infty }{ \dfrac { (1+\pi ) }{ \sum _{ 0 }^{ k }{ \dfrac { { \pi }^{ k } }{ k! } } +\pi } } =\dfrac { 1+\pi }{ \lim _{ k\rightarrow \infty }{ \sum _{ 0 }^{ k }{ \dfrac { { \pi }^{ k } }{ k! } } } +\pi } =\dfrac { 1+\pi }{ \pi +{ e }^{ \pi } }

a = 0 \displaystyle a=0 , b = 1 \displaystyle b=1 and c = 1 \displaystyle c=1

( a + b + c ) a + b + c = 2 2 = 4 \displaystyle (a+b+c)^{a+b+c}=2^{2}=\boxed{4}

Ishan Singh
Sep 12, 2016

We have,

x n + 1 = π n + n x n x_{n+1} = \pi^n + nx^n

x n + 1 n ! = π n n ! + x n ( n 1 ) ! \implies \dfrac{x_{n+1}}{n!} = \dfrac{\pi^n}{n!} + \dfrac{x^n}{(n-1)!}

x n + 1 n ! x n ( n 1 ) ! = π n n ! \implies \dfrac{x_{n+1}}{n!} - \dfrac{x^n}{(n-1)!} = \dfrac{\pi^n}{n!}

x r + 1 r ! x r ( r 1 ) ! = π r r ! \implies \dfrac{x_{r+1}}{r!} - \dfrac{x^r}{(r-1)!} = \dfrac{\pi^r}{r!}

r = 1 n 1 ( x r + 1 r ! x r ( r 1 ) ! ) = r = 1 n 1 π r r ! ( ) \implies \sum_{r=1}^{n-1} \left(\dfrac{x_{r+1}}{r!} - \dfrac{x^r}{(r-1)!}\right) = \sum_{r=1}^{n-1} \dfrac{\pi^r}{r!} \quad \quad (*)

Clearly ( ) (*) telescopes, evaluating it, we have,

x n = ( n 1 ) ! π + ( n 1 ) ! k = 0 n 1 π k k ! x_n = (n-1)!\pi + (n-1)!\sum_{k=0}^{n-1} \dfrac {\pi^k}{k!}

Now,

P = k = 1 n ( 1 π k x k + 1 ) = k = 1 n ( k x k x k + 1 ) = n ! × x 1 x n + 1 \text{P} = \prod _{ k=1 }^{ n }{ \left( 1-\dfrac { { \pi }^{ k } }{ { x }_{ k+1 } } \right) } = \prod _{ k=1 }^{ n }{ \left( \dfrac { k{ x }_{ k } }{ { x }_{ k+1 } } \right) } =\dfrac { n!\times { x }_{ 1 } }{ { x }_{ n+1 } }

where the last equality follows from telescoping the product. Putting the value of x n + 1 x_{n+1} and letting n n \to \infty , we get,

P = 1 + π π + e π \text{P} = \dfrac { 1+\pi }{ \pi +{ e }^{ \pi } }

( a + b + c ) a + b + c = 4 \implies (a+b+c)^{a+b+c} = \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...