Pi and Gamma

Calculus Level 3

Evaluate: lim n k = 1 n π 0 x k e x d x n k ! \lim_{n \to \infty}\sum_{k=1}^{n} \frac{\pi \displaystyle \int_{0}^{\infty}x^ke^{-x}dx}{nk!}

1 -76e 34 π \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 12, 2018

L = lim n k = 1 n π 0 x k e x d x n k ! = lim n k = 1 n π Γ ( k + 1 ) n k ! where Γ ( ) denotes the gamma function. = lim n k = 1 n π k ! n k ! = lim n k = 1 n π n = lim n π = π \begin{aligned} L & = \lim_{n \to \infty} \sum_{k=1}^n \frac {\pi \displaystyle \color{#3D99F6} \int_0^\infty x^k e^{-x} dx}{n k!} \\ & = \lim_{n \to \infty} \sum_{k=1}^n \frac {\pi \color{#3D99F6} \Gamma (k+1)}{n k!} & \small \color{#3D99F6} \text{where }\Gamma (\cdot) \text{ denotes the gamma function.} \\ & = \lim_{n \to \infty} \sum_{k=1}^n \frac {\pi \color{#3D99F6} k!}{n k!} \\ & = \lim_{n \to \infty} \sum_{k=1}^n \frac \pi n \\ & = \lim_{n \to \infty} \pi \\ & = \boxed \pi \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...