Pi sum

Calculus Level 4

lim n 7 n 4 n k = 0 n ( n k ) 2 = a π \large \lim _{ n\rightarrow \infty }{ \frac { 7\sqrt { n } }{ { 4 }^{ n } } \sum _{ k=0 }^{ n }{ \begin{pmatrix} n \\ k \end{pmatrix}^{ 2 } } } =\frac { a }{ \sqrt { \pi } }

Find the integer a a that satisfies the equation above. If you think that such integer does not exist, enter your answer as 666.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim n 7 n 4 n k = 0 n ( n k ) 2 See reference: k = 0 n ( n k ) 2 = ( 2 n n ) = lim n 7 n 4 n ( 2 n n ) = lim n 7 n ( 2 n ) ! 4 n ( n ! ) 2 By Stirling’s formula: n ! 2 π n n + 1 2 e n = lim n 7 n 2 π ( 2 n ) 2 n + 1 2 e 2 n 4 n 2 π n 2 n + 1 e 2 n = lim n 7 π \begin{aligned} L & = \lim_{n \to \infty} \frac {7\sqrt n}{4^n}{\color{#3D99F6}\sum_{k=0}^n {n \choose k}^2} & \small \color{#3D99F6} \text{See reference: } \sum_{k=0}^n {n \choose k}^2 = {2n \choose n} \\ & = \lim_{n \to \infty} \frac {7\sqrt n}{4^n}{\color{#3D99F6}{2n \choose n}} \\ & = \lim_{n \to \infty} \frac {7\sqrt n \color{#3D99F6}(2n)!}{4^n \color{#3D99F6}(n!)^2} & \small \color{#3D99F6} \text{By Stirling's formula: } n! \sim \sqrt{2\pi} n^{n+\frac 12}e^{-n} \\ & = \lim_{n \to \infty} \frac {7\sqrt n \cdot \color{#3D99F6}\sqrt{2\pi} (2n)^{2n+\frac 12}e^{-2n}}{4^n \cdot \color{#3D99F6}2\pi n^{2n+1}e^{-2n}} \\ & = \lim_{n \to \infty} \frac 7{\sqrt \pi} \end{aligned}

a = 7 \implies a = \boxed{7}


References:

  • Equation 9: k = 0 n ( n k ) 2 = ( 2 n n ) \displaystyle \sum_{k=0}^n {n \choose k}^2 = {2n \choose n}
  • Stirling's formula

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...